WEKO3
アイテム
Perturbation of the Navier-Stokes flow in an annular domain with the non-vanishing outflow condition
http://hdl.handle.net/2261/1546
http://hdl.handle.net/2261/1546c804e1fd-08b2-4f44-8a81-a51239e8198d
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2008-03-04 | |||||
タイトル | ||||||
タイトル | Perturbation of the Navier-Stokes flow in an annular domain with the non-vanishing outflow condition | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源 | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | departmental bulletin paper | |||||
著者 |
Morimoto, Hiroko
× Morimoto, Hiroko |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | The boundary value problem of the Navier-Stokes equations has been studied so far only under the vanishing outflow condition due to Leray. We consider this problem in an annular domain $ D = \{ {\Vec x} \in {\bf R}^2 ; R_1 < |{\Vec x}| < R_2 \},$ under the boundary condition with non-vanishing outflow. In a previous paper of the first author, an exact solution is obtained for a simple boundary condition of non-vanishing outflow type: ${\Vec u} = \displaystyle{μ \over R_i} {\Vec e}_r + b_i{\Vec e}_θ \ \mbox{ on } Γ_i, \ i=1, 2, $ where $μ,b_1,b_2$ are arbitrary constants. In this paper, we show the existence of solutions satisfying the boundary condition: $ {\Vec u} = \{ \displaystyle{μ \over {R_i}}+ \varphi_i(θ)\}{\Vec e}_r + \{b_i + ψ_i(θ)\} {\Vec e}_{θ} \ \mbox{ on } \ Γ_i,\ i=1, 2, $ where $\varphi_i(θ),ψ_i(θ)$ are $2 π$-periodic smooth function of $θ$, under some additional condition. | |||||
書誌情報 |
Journal of mathematical sciences, the University of Tokyo 巻 3, 号 1, p. 73-82, 発行日 1996 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 13405705 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA11021653 | |||||
フォーマット | ||||||
内容記述タイプ | Other | |||||
内容記述 | application/pdf | |||||
日本十進分類法 | ||||||
主題Scheme | NDC | |||||
主題 | 415 | |||||
Mathematical Reviews Number | ||||||
MR1414620 | ||||||
Mathmatical Subject Classification | ||||||
76D05(MSC1991) | ||||||
Mathmatical Subject Classification | ||||||
35Q30(MSC1991) | ||||||
出版者 | ||||||
出版者 | Graduate School of Mathematical Sciences, The University of Tokyo | |||||
原稿受領日 | ||||||
1995-02-13 |