ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "4d12ce75-915e-4c90-a1b6-7b8e584b0802"}, "_deposit": {"id": "183", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "183"}, "status": "published"}, "_oai": {"id": "oai:repository.dl.itc.u-tokyo.ac.jp:00000183"}, "item_2_alternative_title_1": {"attribute_name": "\u305d\u306e\u4ed6\u306e\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_alternative_title": "Acquisition of Cooperative Tactics by Soccer Agents with Ability of Prediction and Learning"}]}, "item_2_biblio_info_7": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2001", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "1", "bibliographicPageEnd": "127", "bibliographicPageStart": "120", "bibliographicVolumeNumber": "16", "bibliographic_titles": [{"bibliographic_title": "\u4eba\u5de5\u77e5\u80fd\u5b66\u4f1a\u8ad6\u6587\u8a8c"}]}]}, "item_2_description_13": {"attribute_name": "\u30d5\u30a9\u30fc\u30de\u30c3\u30c8", "attribute_value_mlt": [{"subitem_description": "application/pdf", "subitem_description_type": "Other"}]}, "item_2_description_5": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "Designing soccer agents operating on the Soccer Server has became a standard problem in the multiagent domain, and this paper describes the soccer agents that can learn to make use of cooperative tactics. Considering the ways actual coaches of soccer enable their players learn to execute the soccer tactics, we developed a method of agents\u0027 learning to distinguish good tactics from not-so-good tactics. It is made up mainly of small practical tasks requiring a few agents, of acquisition of appropriate cognitive maps by decomposing the situations into grid information, and of optimization of total play by a kind of adaptive learning. Because the agents perceive the environment as a grid, they have a finite number of condition spaces and are able to predict the behavior of opponents by learning the conditonal probabilities. Each condition has its own utility learned in an evolutionary method.", "subitem_description_type": "Abstract"}]}, "item_2_full_name_3": {"attribute_name": "\u8457\u8005\u5225\u540d", "attribute_value_mlt": [{"nameIdentifiers": [{"nameIdentifier": "105948", "nameIdentifierScheme": "WEKO"}], "names": [{"name": "Kumada, Yoichiro"}]}, {"nameIdentifiers": [{"nameIdentifier": "105949", "nameIdentifierScheme": "WEKO"}], "names": [{"name": "Ueda, Kazuhiro"}]}]}, "item_2_publisher_20": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "\u4eba\u5de5\u77e5\u80fd\u5b66\u4f1a"}]}, "item_2_relation_11": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "info:doi/10.1527/tjsai.16.120", "subitem_relation_type_select": "DOI"}}]}, "item_2_source_id_10": {"attribute_name": "\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID", "attribute_value_mlt": [{"subitem_source_identifier": "AA11579226", "subitem_source_identifier_type": "NCID"}]}, "item_2_source_id_8": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "13460714", "subitem_source_identifier_type": "ISSN"}]}, "item_2_subject_15": {"attribute_name": "\u65e5\u672c\u5341\u9032\u5206\u985e\u6cd5", "attribute_value_mlt": [{"subitem_subject": "007.13", "subitem_subject_scheme": "NDC"}]}, "item_2_text_34": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"subitem_text_value": "Journal Article"}]}, "item_2_text_4": {"attribute_name": "\u8457\u8005\u6240\u5c5e", "attribute_value_mlt": [{"subitem_text_value": "\u6771\u4eac\u5927\u5b66\u5927\u5b66\u9662\u7dcf\u5408\u6587\u5316\u7814\u7a76\u79d1\u5e83\u57df\u79d1\u5b66\u5c02\u653b"}, {"subitem_text_value": "Department of Systems Science, The University of Tokyo"}, {"subitem_text_value": "\u6771\u4eac\u5927\u5b66\u5927\u5b66\u9662\u60c5\u5831\u5b66\u74b0\u30fb\u5b66\u969b\u60c5\u5831\u5b66\u5e9c"}, {"subitem_text_value": "Interfaculty Initiative in Information Studies, The University of Tokyo"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u718a\u7530, \u967d\u4e00\u90ce"}], "nameIdentifiers": [{"nameIdentifier": "105946", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "\u690d\u7530, \u4e00\u535a"}], "nameIdentifiers": [{"nameIdentifier": "105947", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2017-06-26"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "AI_16_01.pdf", "filesize": [{"value": "2.8 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 2800000.0, "url": {"label": "AI_16_01.pdf", "url": "https://repository.dl.itc.u-tokyo.ac.jp/record/183/files/AI_16_01.pdf"}, "version_id": "1bab0ff8-2277-4853-afff-38836d6f0f66"}]}, "item_keyword": {"attribute_name": "\u30ad\u30fc\u30ef\u30fc\u30c9", "attribute_value_mlt": [{"subitem_subject": "soccer agents", "subitem_subject_scheme": "Other"}, {"subitem_subject": "cognitive modeling", "subitem_subject_scheme": "Other"}, {"subitem_subject": "cooperative tactics", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Bayesian prediction", "subitem_subject_scheme": "Other"}, {"subitem_subject": "adaptive learning", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "jpn"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "\u4e88\u6e2c\u80fd\u529b\u3092\u6301\u3064\u30b5\u30c3\u30ab\u30fc\u30a8\u30fc\u30b8\u30a7\u30f3\u30c8\u306b\u3088\u308b\u5354\u8abf\u6226\u8853\u306e\u7372\u5f97", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "\u4e88\u6e2c\u80fd\u529b\u3092\u6301\u3064\u30b5\u30c3\u30ab\u30fc\u30a8\u30fc\u30b8\u30a7\u30f3\u30c8\u306b\u3088\u308b\u5354\u8abf\u6226\u8853\u306e\u7372\u5f97"}]}, "item_type_id": "2", "owner": "1", "path": ["9/10/15", "67/68/69"], "permalink_uri": "http://hdl.handle.net/2261/8105", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2007-12-27"}, "publish_date": "2007-12-27", "publish_status": "0", "recid": "183", "relation": {}, "relation_version_is_last": true, "title": ["\u4e88\u6e2c\u80fd\u529b\u3092\u6301\u3064\u30b5\u30c3\u30ab\u30fc\u30a8\u30fc\u30b8\u30a7\u30f3\u30c8\u306b\u3088\u308b\u5354\u8abf\u6226\u8853\u306e\u7372\u5f97"], "weko_shared_id": null}
  1. 123 情報学環・学際情報学府
  2. 10 情報学環
  3. 1231010 学術雑誌論文
  1. 0 資料タイプ別
  2. 10 学術雑誌論文
  3. 010 総記

予測能力を持つサッカーエージェントによる協調戦術の獲得

http://hdl.handle.net/2261/8105
9e9d6d4e-f476-4dcd-8022-4d05334f60c1
名前 / ファイル ライセンス アクション
AI_16_01.pdf AI_16_01.pdf (2.8 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2007-12-27
タイトル
タイトル 予測能力を持つサッカーエージェントによる協調戦術の獲得
言語
言語 jpn
キーワード
主題 soccer agents
主題Scheme Other
キーワード
主題 cognitive modeling
主題Scheme Other
キーワード
主題 cooperative tactics
主題Scheme Other
キーワード
主題 Bayesian prediction
主題Scheme Other
キーワード
主題 adaptive learning
主題Scheme Other
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ journal article
その他のタイトル
その他のタイトル Acquisition of Cooperative Tactics by Soccer Agents with Ability of Prediction and Learning
著者 熊田, 陽一郎

× 熊田, 陽一郎

WEKO 105946

熊田, 陽一郎

Search repository
植田, 一博

× 植田, 一博

WEKO 105947

植田, 一博

Search repository
著者別名
識別子
識別子 105948
識別子Scheme WEKO
姓名
姓名 Kumada, Yoichiro
著者別名
識別子
識別子 105949
識別子Scheme WEKO
姓名
姓名 Ueda, Kazuhiro
著者所属
著者所属 東京大学大学院総合文化研究科広域科学専攻
著者所属
著者所属 Department of Systems Science, The University of Tokyo
著者所属
著者所属 東京大学大学院情報学環・学際情報学府
著者所属
著者所属 Interfaculty Initiative in Information Studies, The University of Tokyo
抄録
内容記述タイプ Abstract
内容記述 Designing soccer agents operating on the Soccer Server has became a standard problem in the multiagent domain, and this paper describes the soccer agents that can learn to make use of cooperative tactics. Considering the ways actual coaches of soccer enable their players learn to execute the soccer tactics, we developed a method of agents' learning to distinguish good tactics from not-so-good tactics. It is made up mainly of small practical tasks requiring a few agents, of acquisition of appropriate cognitive maps by decomposing the situations into grid information, and of optimization of total play by a kind of adaptive learning. Because the agents perceive the environment as a grid, they have a finite number of condition spaces and are able to predict the behavior of opponents by learning the conditonal probabilities. Each condition has its own utility learned in an evolutionary method.
書誌情報 人工知能学会論文誌

巻 16, 号 1, p. 120-127, 発行日 2001
ISSN
収録物識別子タイプ ISSN
収録物識別子 13460714
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11579226
DOI
関連識別子
識別子タイプ DOI
関連識別子 info:doi/10.1527/tjsai.16.120
フォーマット
内容記述タイプ Other
内容記述 application/pdf
日本十進分類法
主題 007.13
主題Scheme NDC
出版者
出版者 人工知能学会
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-02 00:44:55.914219
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio