WEKO3
アイテム
研究解説 : Runge-Kutta-Mersonによる常微分方程式の数値的解法
http://hdl.handle.net/2261/31370
http://hdl.handle.net/2261/313709f5ce06d-4322-4982-842a-a40fd0e188dd
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2009-12-24 | |||||
タイトル | ||||||
タイトル | 研究解説 : Runge-Kutta-Mersonによる常微分方程式の数値的解法 | |||||
言語 | ||||||
言語 | jpn | |||||
資源タイプ | ||||||
資源 | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | departmental bulletin paper | |||||
著者 |
藤田, 長子
× 藤田, 長子 |
|||||
著者所属 | ||||||
著者所属 | 東京大学生産技術研究所 天体物理学 |Institute of Industrial Science. University of Tokyo | |||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | 常微分方程式を数値的に解く方法として,最もよく用いられるのはRunge-Kutta法である.しかし,微分方程式の形が複雑であったり,函数自身に不連続点が存在するような場合には,ふつうのRunge-Kutta法では解けないことがある.Mersonは最近,Runge-Kutta法を改良し,初めに設定された許容誤差(tolerance)にもとづいて各点における積分区間の幅を自動的に制御できる方法を提案した.OKITAC-5090電子計算機のためのこの方法を用いた積分ルチーンを説明し,それを用いて解いた二三の例をあげてみよう. | |||||
書誌情報 |
生産研究 巻 16, 号 3, p. 80-84, 発行日 1964-03-01 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 0037105X | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AN00127075 | |||||
フォーマット | ||||||
内容記述タイプ | Other | |||||
内容記述 | application/pdf | |||||
日本十進分類法 | ||||||
主題Scheme | NDC | |||||
主題 | 500 | |||||
出版者 | ||||||
出版者 | 東京大学生産技術研究所 | |||||
出版者別名 | ||||||
Institute of Industrial Science. University of Tokyo |