WEKO3
アイテム
イベント共参照関係を利用した因果関係知識の獲得
http://hdl.handle.net/2261/51736
http://hdl.handle.net/2261/517363514e67d-30e4-4b45-9bdc-6f836da6d2ec
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学位論文 / Thesis or Dissertation(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2012-05-29 | |||||
タイトル | ||||||
タイトル | イベント共参照関係を利用した因果関係知識の獲得 | |||||
言語 | ||||||
言語 | jpn | |||||
資源タイプ | ||||||
資源 | http://purl.org/coar/resource_type/c_46ec | |||||
タイプ | thesis | |||||
その他のタイトル | ||||||
その他のタイトル | Extracting Causal Relation using Event Coreference | |||||
著者 |
田中, 翔平
× 田中, 翔平 |
|||||
著者別名 | ||||||
識別子Scheme | WEKO | |||||
識別子 | 8199 | |||||
姓名 | Tanaka, Shohei | |||||
著者所属 | ||||||
著者所属 | 東京大学大学院情報理工学系研究科電子情報学専攻 | |||||
著者所属 | ||||||
著者所属 | Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo | |||||
Abstract | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Causal relations are essential knowledge for interpreting discourse structure of text. This paper presents a method that extracts causal relations of lexical patterns in the form of quasi Horn clauses: for example, "A acquires B" AND "B is located in X"→"the acquisition gives A operations in X". The input of the method is a relation tuple consisting of two entities and a verb, e.g., (A, acquire, B). The method finds coreferencial expressions of the given relation that mention the same event. We use nominal forms of verbs included in FrameNet for finding the coreference expression. If a nominal form of a relation occurs as the subject in the dependency tree of a sentence, the sentence is likely to describe what is caused by the event. Then the method uses several NLP techniques (part-of-speech tagging, coreference resolution, dependency parsing and named entity recognition) in order to build a lexical pattern containing the entities (A and B). However, such rules are so specific that computers cannot reuse the knowledge of causality relation: for example, "the acquisition gives A operations in Nevada". Therefore, the proposed method generalize the rules by introducing a variable X and estimating the relation between X and A or between X and B. For evaluation, we asked human annotators to judge the correctness of the causal-relation rules. The result shows that the proposed method precisely extracts the causal-relation rules. | |||||
書誌情報 | 発行日 2012-03-22 | |||||
日本十進分類法 | ||||||
主題Scheme | NDC | |||||
主題 | 007 | |||||
学位名 | ||||||
学位名 | 修士(情報理工学) | |||||
学位 | ||||||
値 | master | |||||
研究科・専攻 | ||||||
情報理工学系研究科電子情報学専攻 | ||||||
学位授与年月日 | ||||||
学位授与年月日 | 2012-03-22 |