ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "dbcb7c25-8b4f-4404-bcd3-78109b7ff74f"}, "_deposit": {"id": "40017", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "40017"}, "status": "published"}, "_oai": {"id": "oai:repository.dl.itc.u-tokyo.ac.jp:00040017"}, "item_4_biblio_info_7": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2013-03-15", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "4", "bibliographicPageEnd": "716", "bibliographicPageStart": "699", "bibliographicVolumeNumber": "19", "bibliographic_titles": [{"bibliographic_title": "Journal of mathematical sciences, the University of Tokyo"}]}]}, "item_4_description_5": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "In this paper, we investigate the relative Gel\u2019fand- Kalinin-Fuks cohomology groups of the formal Hamiltonian vector fields on R4. In the case of formal Hamiltonian vector fields on R2, we computed the relative Gel\u2019fand-Kalinin-Fuks cohomology groups of weight \u003c 20 in the paper by Mikami-Nakae-Kodama. The main strategy there was decomposing the Gel\u2019fand-Fucks cochain complex into irreducible factors and picking up the trivial representations and their concrete bases, and ours is essentially the same. By computer calculation, we determine the relative Gel\u2019fand-Kalinin-Fuks cohomology groups of the formal Hamiltonian vector fields on R4 of weights 2, 4 and 6. In the case of weight 2, the Betti number of the cohomology group is equal to 1 at degree 2 and is 0 at any other degree. In weight 4, the Betti number is 2 at degree 4 and is 0 at any other degree, and in weight 6, the Betti number is 0 at any degree.", "subitem_description_type": "Abstract"}]}, "item_4_publisher_20": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "Graduate School of Mathematical Sciences, The University of Tokyo"}]}, "item_4_source_id_10": {"attribute_name": "\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID", "attribute_value_mlt": [{"subitem_source_identifier": "AA11021653", "subitem_source_identifier_type": "NCID"}]}, "item_4_source_id_8": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "13405705", "subitem_source_identifier_type": "ISSN"}]}, "item_4_subject_15": {"attribute_name": "\u65e5\u672c\u5341\u9032\u5206\u985e\u6cd5", "attribute_value_mlt": [{"subitem_subject": "415", "subitem_subject_scheme": "NDC"}]}, "item_4_text_16": {"attribute_name": "Mathematical Reviews Number", "attribute_value_mlt": [{"subitem_text_value": "MR"}]}, "item_4_text_17": {"attribute_name": "Mathmatical Subject Classification", "attribute_value_mlt": [{"subitem_text_value": "57R32(MSC2010)"}, {"subitem_text_value": "57R17(MSC2010)"}, {"subitem_text_value": "17B66(MSC2010)"}]}, "item_4_text_33": {"attribute_name": "\u539f\u7a3f\u53d7\u9818\u65e5", "attribute_value_mlt": [{"subitem_text_value": "2012-09-19"}]}, "item_4_text_34": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"subitem_text_value": "Departmental Bulletin Paper"}]}, "item_4_text_4": {"attribute_name": "\u8457\u8005\u6240\u5c5e", "attribute_value_mlt": [{"subitem_text_value": "Department of Computer Science and Engineering, Akita University"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Mikami, Kentaro"}], "nameIdentifiers": [{"nameIdentifier": "92454", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Nakae, Yasuharu"}], "nameIdentifiers": [{"nameIdentifier": "92455", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2017-06-14"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "jms190409.pdf", "filesize": [{"value": "157.3 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 157300.0, "url": {"label": "jms190409.pdf", "url": "https://repository.dl.itc.u-tokyo.ac.jp/record/40017/files/jms190409.pdf"}, "version_id": "16177885-4afa-484e-bb49-193080fac9c3"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Lower Weight Gel\u2019fand-Kalinin-Fuks Cohomology Groups of the Formal Hamiltonian Vector Fields on R4", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Lower Weight Gel\u2019fand-Kalinin-Fuks Cohomology Groups of the Formal Hamiltonian Vector Fields on R4"}]}, "item_type_id": "4", "owner": "1", "path": ["312/6865/6899/6900", "9/504/6868/6901/6902"], "permalink_uri": "http://hdl.handle.net/2261/59034", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2015-12-15"}, "publish_date": "2015-12-15", "publish_status": "0", "recid": "40017", "relation": {}, "relation_version_is_last": true, "title": ["Lower Weight Gel\u2019fand-Kalinin-Fuks Cohomology Groups of the Formal Hamiltonian Vector Fields on R4"], "weko_shared_id": null}
  1. 121 数理科学研究科
  2. Journal of Mathematical Sciences, the University of Tokyo
  3. 19
  4. 4
  1. 0 資料タイプ別
  2. 30 紀要・部局刊行物
  3. Journal of Mathematical Sciences, the University of Tokyo
  4. 19
  5. 4

Lower Weight Gel’fand-Kalinin-Fuks Cohomology Groups of the Formal Hamiltonian Vector Fields on R4

http://hdl.handle.net/2261/59034
37c8a384-5adc-41c9-9f87-5d6ffbc3ba41
名前 / ファイル ライセンス アクション
jms190409.pdf jms190409.pdf (157.3 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2015-12-15
タイトル
タイトル Lower Weight Gel’fand-Kalinin-Fuks Cohomology Groups of the Formal Hamiltonian Vector Fields on R4
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
著者 Mikami, Kentaro

× Mikami, Kentaro

WEKO 92454

Mikami, Kentaro

Search repository
Nakae, Yasuharu

× Nakae, Yasuharu

WEKO 92455

Nakae, Yasuharu

Search repository
著者所属
著者所属 Department of Computer Science and Engineering, Akita University
抄録
内容記述タイプ Abstract
内容記述 In this paper, we investigate the relative Gel’fand- Kalinin-Fuks cohomology groups of the formal Hamiltonian vector fields on R4. In the case of formal Hamiltonian vector fields on R2, we computed the relative Gel’fand-Kalinin-Fuks cohomology groups of weight < 20 in the paper by Mikami-Nakae-Kodama. The main strategy there was decomposing the Gel’fand-Fucks cochain complex into irreducible factors and picking up the trivial representations and their concrete bases, and ours is essentially the same. By computer calculation, we determine the relative Gel’fand-Kalinin-Fuks cohomology groups of the formal Hamiltonian vector fields on R4 of weights 2, 4 and 6. In the case of weight 2, the Betti number of the cohomology group is equal to 1 at degree 2 and is 0 at any other degree. In weight 4, the Betti number is 2 at degree 4 and is 0 at any other degree, and in weight 6, the Betti number is 0 at any degree.
書誌情報 Journal of mathematical sciences, the University of Tokyo

巻 19, 号 4, p. 699-716, 発行日 2013-03-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 13405705
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11021653
日本十進分類法
主題 415
主題Scheme NDC
Mathematical Reviews Number
MR
Mathmatical Subject Classification
57R32(MSC2010)
Mathmatical Subject Classification
57R17(MSC2010)
Mathmatical Subject Classification
17B66(MSC2010)
出版者
出版者 Graduate School of Mathematical Sciences, The University of Tokyo
原稿受領日
2012-09-19
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-02 02:39:35.324720
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio