ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "f24d31e0-0048-4a5b-a07f-c3045da75391"}, "_deposit": {"id": "40027", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "40027"}, "status": "published"}, "_oai": {"id": "oai:repository.dl.itc.u-tokyo.ac.jp:00040027"}, "item_4_biblio_info_7": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2012-06-20", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "1", "bibliographicPageEnd": "68", "bibliographicPageStart": "57", "bibliographicVolumeNumber": "19", "bibliographic_titles": [{"bibliographic_title": "Journal of mathematical sciences, the University of Tokyo"}]}]}, "item_4_description_5": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "This paper is concerned with the well-posedness, especially with the continuity of the solution map of the nonlinear Schr\u00f6dinger equation i\u2202tu + \u0394u = f(u), u(x, 0) = \u03c6(x) on R(n+1). Here, f(u) = c0|u|\u03c3u, c0 \u2208 C and \u03c3 \u003e 0. If 1 \u003c s \u003c min(n/2, 2) and 0 \u003c \u03c3 \u003c 4/(n - 2s), the solution map \u03c6|\u2192 u is continuous as a map from Hs to C([0, T], Hs) for some T \u003e 0. The proof is based on the estimates in the fractional order Besov spaces both for time and space variables.", "subitem_description_type": "Abstract"}]}, "item_4_publisher_20": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "Graduate School of Mathematical Sciences, The University of Tokyo"}]}, "item_4_source_id_10": {"attribute_name": "\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID", "attribute_value_mlt": [{"subitem_source_identifier": "AA11021653", "subitem_source_identifier_type": "NCID"}]}, "item_4_source_id_8": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "13405705", "subitem_source_identifier_type": "ISSN"}]}, "item_4_subject_15": {"attribute_name": "\u65e5\u672c\u5341\u9032\u5206\u985e\u6cd5", "attribute_value_mlt": [{"subitem_subject": "415", "subitem_subject_scheme": "NDC"}]}, "item_4_text_16": {"attribute_name": "Mathematical Reviews Number", "attribute_value_mlt": [{"subitem_text_value": "MR"}]}, "item_4_text_17": {"attribute_name": "Mathmatical Subject Classification", "attribute_value_mlt": [{"subitem_text_value": "35Q55(MSC2010)"}]}, "item_4_text_33": {"attribute_name": "\u539f\u7a3f\u53d7\u9818\u65e5", "attribute_value_mlt": [{"subitem_text_value": "2011-11-17"}]}, "item_4_text_34": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"subitem_text_value": "Departmental Bulletin Paper"}]}, "item_4_text_4": {"attribute_name": "\u8457\u8005\u6240\u5c5e", "attribute_value_mlt": [{"subitem_text_value": "Department of Mathematics, Faculty of Engineering, Kumamoto University"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Uchizono, Harunori"}], "nameIdentifiers": [{"nameIdentifier": "92470", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Wada, Takeshi"}], "nameIdentifiers": [{"nameIdentifier": "92471", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2017-06-14"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "jms190102.pdf", "filesize": [{"value": "138.4 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 138400.0, "url": {"label": "jms190102.pdf", "url": "https://repository.dl.itc.u-tokyo.ac.jp/record/40027/files/jms190102.pdf"}, "version_id": "1e2f9640-1dc3-431f-857d-ee8a33502201"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Continuous Dependence for Nonlinear Schr\u00f6dinger Equation in Hs", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Continuous Dependence for Nonlinear Schr\u00f6dinger Equation in Hs"}]}, "item_type_id": "4", "owner": "1", "path": ["312/6865/6899/6907", "9/504/6868/6901/6908"], "permalink_uri": "http://hdl.handle.net/2261/54909", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2013-06-19"}, "publish_date": "2013-06-19", "publish_status": "0", "recid": "40027", "relation": {}, "relation_version_is_last": true, "title": ["Continuous Dependence for Nonlinear Schr\u00f6dinger Equation in Hs"], "weko_shared_id": null}
  1. 121 数理科学研究科
  2. Journal of Mathematical Sciences, the University of Tokyo
  3. 19
  4. 1
  1. 0 資料タイプ別
  2. 30 紀要・部局刊行物
  3. Journal of Mathematical Sciences, the University of Tokyo
  4. 19
  5. 1

Continuous Dependence for Nonlinear Schrödinger Equation in Hs

http://hdl.handle.net/2261/54909
43854742-b72e-4f67-a966-d5f9d1559f8d
名前 / ファイル ライセンス アクション
jms190102.pdf jms190102.pdf (138.4 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2013-06-19
タイトル
タイトル Continuous Dependence for Nonlinear Schrödinger Equation in Hs
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
著者 Uchizono, Harunori

× Uchizono, Harunori

WEKO 92470

Uchizono, Harunori

Search repository
Wada, Takeshi

× Wada, Takeshi

WEKO 92471

Wada, Takeshi

Search repository
著者所属
著者所属 Department of Mathematics, Faculty of Engineering, Kumamoto University
抄録
内容記述タイプ Abstract
内容記述 This paper is concerned with the well-posedness, especially with the continuity of the solution map of the nonlinear Schrödinger equation i∂tu + Δu = f(u), u(x, 0) = φ(x) on R(n+1). Here, f(u) = c0|u|σu, c0 ∈ C and σ > 0. If 1 < s < min(n/2, 2) and 0 < σ < 4/(n - 2s), the solution map φ|→ u is continuous as a map from Hs to C([0, T], Hs) for some T > 0. The proof is based on the estimates in the fractional order Besov spaces both for time and space variables.
書誌情報 Journal of mathematical sciences, the University of Tokyo

巻 19, 号 1, p. 57-68, 発行日 2012-06-20
ISSN
収録物識別子タイプ ISSN
収録物識別子 13405705
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11021653
日本十進分類法
主題 415
主題Scheme NDC
Mathematical Reviews Number
MR
Mathmatical Subject Classification
35Q55(MSC2010)
出版者
出版者 Graduate School of Mathematical Sciences, The University of Tokyo
原稿受領日
2011-11-17
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-02 02:39:12.266050
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio