ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 121 数理科学研究科
  2. Journal of Mathematical Sciences, the University of Tokyo
  3. 18
  4. 2
  1. 0 資料タイプ別
  2. 30 紀要・部局刊行物
  3. Journal of Mathematical Sciences, the University of Tokyo
  4. 18
  5. 2

An Invariant of Embeddings of 3-Manifolds in 6-Manifolds and Milnor's Triple Linking Number

http://hdl.handle.net/2261/52706
http://hdl.handle.net/2261/52706
37ef7982-8b2a-414f-8e95-6864bcafa887
名前 / ファイル ライセンス アクション
jms180204.pdf jms180204.pdf (309.7 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2012-12-12
タイトル
タイトル An Invariant of Embeddings of 3-Manifolds in 6-Manifolds and Milnor's Triple Linking Number
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
著者 Moriyama, Tetsuhiro

× Moriyama, Tetsuhiro

WEKO 92492

Moriyama, Tetsuhiro

Search repository
著者所属
著者所属 Shibano Patent Office
抄録
内容記述タイプ Abstract
内容記述 We give a simple axiomatic definition of a rational-valued invariant σ(W, V, e) of triples (W, V, e), where W ⊃ V are smooth oriented closed manifolds of dimensions 6 and 3, and e is a second rational cohomology class of the complement W \ V satisfying a certain condition. The definition is stated in terms of cobordisms of such triples and the signature of 4-manifolds. When W = S6 and V is a smoothly embedded 3-sphere, and when e/2 is the Poincaré dual of a Seifert surface of V, the invariant coincides with -8 times Haefliger's embedding invariant of (S6, V). Our definition recovers a more general invariant due to Takase, and contains a new definition for Milnor's triple linking number of algebraically split 3-component links in R3 that is close to the one given by the perturbative series expansion of the Chern-Simons theory of links in R3.
書誌情報 Journal of mathematical sciences, the University of Tokyo

巻 18, 号 2, p. 193-237, 発行日 2011-12-09
ISSN
収録物識別子タイプ ISSN
収録物識別子 13405705
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11021653
日本十進分類法
主題Scheme NDC
主題 415
Mathematical Reviews Number
MR
Mathmatical Subject Classification
57R40(MSC2010)
Mathmatical Subject Classification
57M27(MSC2010)
Mathmatical Subject Classification
57R52(MSC2010)
Mathmatical Subject Classification
57M25(MSC2010)
出版者
出版者 Graduate School of Mathematical Sciences, The University of Tokyo
原稿受領日
2011-05-09
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-02 02:38:40.832468
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3