ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "0d598a7b-ed4d-4905-8c4c-78b49b383e01"}, "_deposit": {"id": "40063", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "40063"}, "status": "published"}, "_oai": {"id": "oai:repository.dl.itc.u-tokyo.ac.jp:00040063"}, "item_4_biblio_info_7": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2010-07-20", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "1", "bibliographicPageEnd": "26", "bibliographicPageStart": "1", "bibliographicVolumeNumber": "17", "bibliographic_titles": [{"bibliographic_title": "Journal of mathematical sciences, the University of Tokyo"}]}]}, "item_4_description_5": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "We define a local Riemann-Roch number for an open symplectic manifold when a completely integrable system without Bohr-Sommerfeld fiber is provided on its end. In particular when a structure of a singular Lagrangian fibration is given on a closed symplectic manifold, its Riemann-Roch number is described as the sum of the number of nonsingular Bohr-Sommerfeld fibers and a contribution of the singular fibers. A key step of the proof is formally explained as a version of Witten\u0027s deformation applied to a Hilbert bundle.", "subitem_description_type": "Abstract"}]}, "item_4_publisher_20": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "Graduate School of Mathematical Sciences, The University of Tokyo"}]}, "item_4_source_id_10": {"attribute_name": "\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID", "attribute_value_mlt": [{"subitem_source_identifier": "AA11021653", "subitem_source_identifier_type": "NCID"}]}, "item_4_source_id_8": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "13405705", "subitem_source_identifier_type": "ISSN"}]}, "item_4_subject_15": {"attribute_name": "\u65e5\u672c\u5341\u9032\u5206\u985e\u6cd5", "attribute_value_mlt": [{"subitem_subject": "415", "subitem_subject_scheme": "NDC"}]}, "item_4_text_16": {"attribute_name": "Mathematical Reviews Number", "attribute_value_mlt": [{"subitem_text_value": "MR"}]}, "item_4_text_17": {"attribute_name": "Mathmatical Subject Classification", "attribute_value_mlt": [{"subitem_text_value": "53D50(MSC2000)"}, {"subitem_text_value": "58J20(MSC2000)"}]}, "item_4_text_33": {"attribute_name": "\u539f\u7a3f\u53d7\u9818\u65e5", "attribute_value_mlt": [{"subitem_text_value": "2008-04-18"}]}, "item_4_text_34": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"subitem_text_value": "Departmental Bulletin Paper"}]}, "item_4_text_4": {"attribute_name": "\u8457\u8005\u6240\u5c5e", "attribute_value_mlt": [{"subitem_text_value": "Department of Mathematics, Gakushuin University"}, {"subitem_text_value": "Graduate School of Mathematical Sciences, The University of Tokyo"}, {"subitem_text_value": "Department of Mathematics, Graduate School of Science and Technology, Meiji University"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Fujita, Hajime"}], "nameIdentifiers": [{"nameIdentifier": "92519", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Furuta, Mikio"}], "nameIdentifiers": [{"nameIdentifier": "92520", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Yoshida, Takahiko"}], "nameIdentifiers": [{"nameIdentifier": "92521", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2017-06-14"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "jms170101.pdf", "filesize": [{"value": "207.2 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 207200.0, "url": {"label": "jms170101.pdf", "url": "https://repository.dl.itc.u-tokyo.ac.jp/record/40063/files/jms170101.pdf"}, "version_id": "71fe6b1f-846e-45a7-973e-22904f178d01"}]}, "item_keyword": {"attribute_name": "\u30ad\u30fc\u30ef\u30fc\u30c9", "attribute_value_mlt": [{"subitem_subject": "Geometric quantization", "subitem_subject_scheme": "Other"}, {"subitem_subject": "index theory", "subitem_subject_scheme": "Other"}, {"subitem_subject": "localization", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Torus Fibrations and Localization of Index I : Polarization and Acyclic Fibrations", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Torus Fibrations and Localization of Index I : Polarization and Acyclic Fibrations"}]}, "item_type_id": "4", "owner": "1", "path": ["312/6865/6919/6927", "9/504/6868/6921/6928"], "permalink_uri": "http://hdl.handle.net/2261/52392", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2012-10-22"}, "publish_date": "2012-10-22", "publish_status": "0", "recid": "40063", "relation": {}, "relation_version_is_last": true, "title": ["Torus Fibrations and Localization of Index I : Polarization and Acyclic Fibrations"], "weko_shared_id": null}
  1. 121 数理科学研究科
  2. Journal of Mathematical Sciences, the University of Tokyo
  3. 17
  4. 1
  1. 0 資料タイプ別
  2. 30 紀要・部局刊行物
  3. Journal of Mathematical Sciences, the University of Tokyo
  4. 17
  5. 1

Torus Fibrations and Localization of Index I : Polarization and Acyclic Fibrations

http://hdl.handle.net/2261/52392
5596b743-c15d-4f8a-9f6f-185f91738f88
名前 / ファイル ライセンス アクション
jms170101.pdf jms170101.pdf (207.2 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2012-10-22
タイトル
タイトル Torus Fibrations and Localization of Index I : Polarization and Acyclic Fibrations
言語
言語 eng
キーワード
主題 Geometric quantization
主題Scheme Other
キーワード
主題 index theory
主題Scheme Other
キーワード
主題 localization
主題Scheme Other
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
著者 Fujita, Hajime

× Fujita, Hajime

WEKO 92519

Fujita, Hajime

Search repository
Furuta, Mikio

× Furuta, Mikio

WEKO 92520

Furuta, Mikio

Search repository
Yoshida, Takahiko

× Yoshida, Takahiko

WEKO 92521

Yoshida, Takahiko

Search repository
著者所属
著者所属 Department of Mathematics, Gakushuin University
著者所属
著者所属 Graduate School of Mathematical Sciences, The University of Tokyo
著者所属
著者所属 Department of Mathematics, Graduate School of Science and Technology, Meiji University
抄録
内容記述タイプ Abstract
内容記述 We define a local Riemann-Roch number for an open symplectic manifold when a completely integrable system without Bohr-Sommerfeld fiber is provided on its end. In particular when a structure of a singular Lagrangian fibration is given on a closed symplectic manifold, its Riemann-Roch number is described as the sum of the number of nonsingular Bohr-Sommerfeld fibers and a contribution of the singular fibers. A key step of the proof is formally explained as a version of Witten's deformation applied to a Hilbert bundle.
書誌情報 Journal of mathematical sciences, the University of Tokyo

巻 17, 号 1, p. 1-26, 発行日 2010-07-20
ISSN
収録物識別子タイプ ISSN
収録物識別子 13405705
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11021653
日本十進分類法
主題 415
主題Scheme NDC
Mathematical Reviews Number
MR
Mathmatical Subject Classification
53D50(MSC2000)
Mathmatical Subject Classification
58J20(MSC2000)
出版者
出版者 Graduate School of Mathematical Sciences, The University of Tokyo
原稿受領日
2008-04-18
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-02 02:37:59.886892
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio