WEKO3
アイテム
The Growth of the Nevanlinna Proximity Function
http://hdl.handle.net/2261/43526
http://hdl.handle.net/2261/435260a2cdb12-c8da-4ffb-9f78-b808cc6fd28b
名前 / ファイル | ライセンス | アクション |
---|---|---|
jms160403.pdf (176.2 kB)
|
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2011-04-06 | |||||
タイトル | ||||||
タイトル | The Growth of the Nevanlinna Proximity Function | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | departmental bulletin paper | |||||
著者 |
Nitanda, Atsushi
× Nitanda, Atsushi |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Let f be a meromorphic mapping from Cn into a compact complex manifold M. In this paper we give some estimates of the growth of the proximity function mf (r,D) of f with respect to a divisor D. J.E. Littlewood [2] (cf. Hayman [1]) proved that every non-constant meromorphic function g on the complex plane C satisfies lim supr→∞ mg(r,a) log T(r,g) ≤ 1 2 for almost all point a of the Riemann sphere. We extend this result to the case of a meromorphic mapping f : Cn → M and a linear system P(E) on M. The main result is an estimate of the following type: For almost all divisor D ∈ P(E), lim supr→∞ mf (r,D)−mf (r,IB(E)) log TfE(r,HE) ≤ 1 2 .. | |||||
書誌情報 |
Journal of mathematical sciences, the University of Tokyo 巻 16, 号 4, p. 525-543, 発行日 2010-03-25 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 13405705 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA11021653 | |||||
日本十進分類法 | ||||||
主題Scheme | NDC | |||||
主題 | 415 | |||||
Mathematical Reviews Number | ||||||
値 | MR | |||||
Mathmatical Subject Classification | ||||||
値 | 32A22(MSC2000) | |||||
Mathmatical Subject Classification | ||||||
値 | 32H30(MSC2000) | |||||
Mathmatical Subject Classification | ||||||
値 | 30D35(MSC2000) | |||||
出版者 | ||||||
出版者 | Graduate School of Mathematical Sciences, The University of Tokyo | |||||
原稿受領日 | ||||||
値 | 2009-07-15 |