ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 121 数理科学研究科
  2. Journal of Mathematical Sciences, the University of Tokyo
  3. 16
  4. 3
  1. 0 資料タイプ別
  2. 30 紀要・部局刊行物
  3. Journal of Mathematical Sciences, the University of Tokyo
  4. 16
  5. 3

A Shintani-type formula for Gross--Stark units over function fields

http://hdl.handle.net/2261/38188
http://hdl.handle.net/2261/38188
07f200e2-348e-47b8-9318-be05a91d76a4
名前 / ファイル ライセンス アクション
jms160302.pdf jms160302.pdf (223.1 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2010-11-30
タイトル
タイトル A Shintani-type formula for Gross--Stark units over function fields
言語
言語 eng
キーワード
主題Scheme Other
主題 asymptotic
キーワード
主題Scheme Other
主題 behavior
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
著者 Dasgupta, Samit

× Dasgupta, Samit

WEKO 92533

Dasgupta, Samit

Search repository
Miller, Alison

× Miller, Alison

WEKO 92534

Miller, Alison

Search repository
抄録
内容記述タイプ Abstract
内容記述 Let F be a totally real number field of degree n, and let H be a finite abelian extension of F. Let p denote a prime ideal of F that splits completely in H. Following Brumer and Stark, Tate conjectured the existence of a p-unit u in H whose p-adic absolute values are related in a precise way to the partial zeta-functions of the extension H/F. Gross later refined this conjecture by proposing a formula for the p-adic norm of the element u. Recently, using methods of Shintani, the first author refined the conjecture further by proposing an exact formula for u in the p-adic completion of H. In this article we state and prove a function field analogue of this Shintani-type formula. The role of the totally real field F is played by the function field of a curve over a finite field in which n places have been removed. These places represent the “real places” of F. Our method of proof follows that of Hayes, who proved Gross’s conjecture for function fields using the theory of Drinfeld modules and their associated exponential functions.
書誌情報 Journal of mathematical sciences, the University of Tokyo

巻 16, 号 3, p. 415-440, 発行日 2009-11-30
ISSN
収録物識別子タイプ ISSN
収録物識別子 13405705
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11021653
日本十進分類法
主題Scheme NDC
主題 415
Mathematical Reviews Number
MR
Mathmatical Subject Classification
11R58(MSC2000)
Mathmatical Subject Classification
11R37(MSC2000)
Mathmatical Subject Classification
11R80(MSC2000)
Mathmatical Subject Classification
11G09(MSC2000)
出版者
出版者 Graduate School of Mathematical Sciences, The University of Tokyo
原稿受領日
2008-08-25
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-02 02:37:41.649469
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3