WEKO3
アイテム
Averages of Green Functions of Classical Groups
http://hdl.handle.net/2261/1348
http://hdl.handle.net/2261/1348f2dc1dd5-98d8-4676-8331-ac2df1c91efd
| 名前 / ファイル | ライセンス | アクション |
|---|---|---|
|
|
|
| Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
|---|---|---|---|---|---|---|
| 公開日 | 2008-03-04 | |||||
| タイトル | ||||||
| タイトル | Averages of Green Functions of Classical Groups | |||||
| 言語 | ||||||
| 言語 | eng | |||||
| 資源タイプ | ||||||
| 資源 | http://purl.org/coar/resource_type/c_6501 | |||||
| タイプ | departmental bulletin paper | |||||
| 著者 |
Shoji, Toshiaki
× Shoji, Toshiaki |
|||||
| 抄録 | ||||||
| 内容記述タイプ | Abstract | |||||
| 内容記述 | In this paper, we compare the Green functions of $Sp(2n,q)$ and $SO(2n+1,q)$ with those of $GL(n,q^2)$ and find an interesting connection between them. Let $G = Sp_{2n}(\FFq)$ or $SO_{2n+1}(\FFq)$ and $\bar G = GL_n(\FFq)$ with Frobenuius map $F$. The Weyl group $W$ of $G$ is written as $W = DS_n$, where $D$ is an elementary abelian 2-group and $S_n$ is the symmetric group of degree $n$, which is identified with the Weyl group of $\bar G$. Let $Q_{T_w}^G$ be a Green function of $G^F$ where $T_w$ is an $F$-stable maximal torus of $G$ corresponding to $w \in W$. For $w \in S_n$, we define an average of Green functions $Q_{w, D}^G$ on $G^F$ by $Q_{w,D}^G = |D|\iv\sum_{x \in D}Q_{T_{wx}}^G.$ Then there exists a natural injection $u_0 \mapsto u$ from the set of unipotent classes of $\bar G$ to the set of unipotent classes of $G$ such that the function $Q_{w,D}^G(u)$ on $G^F$ coincides with the Green function $Q_{\bar T_w}^{\bar G}(u_0)$ on $\bar G^{F^2}$. | |||||
| 書誌情報 |
Journal of mathematical sciences, the University of Tokyo 巻 5, 号 1, p. 165-220, 発行日 1998 |
|||||
| ISSN | ||||||
| 収録物識別子タイプ | ISSN | |||||
| 収録物識別子 | 13405705 | |||||
| 書誌レコードID | ||||||
| 収録物識別子タイプ | NCID | |||||
| 収録物識別子 | AA11021653 | |||||
| フォーマット | ||||||
| 内容記述タイプ | Other | |||||
| 内容記述 | application/pdf | |||||
| 日本十進分類法 | ||||||
| 主題Scheme | NDC | |||||
| 主題 | 415 | |||||
| Mathematical Reviews Number | ||||||
| MR1617076 | ||||||
| Mathmatical Subject Classification | ||||||
| 20G40(MSC1991) | ||||||
| Mathmatical Subject Classification | ||||||
| 20G10(MSC1991) | ||||||
| Mathmatical Subject Classification | ||||||
| 14M15(MSC1991) | ||||||
| Mathmatical Subject Classification | ||||||
| 20C15(MSC1991) | ||||||
| 出版者 | ||||||
| 出版者 | Graduate School of Mathematical Sciences, The University of Tokyo | |||||
| 原稿受領日 | ||||||
| 1997-05-14 | ||||||