WEKO3
アイテム
On L$^1$-Stability of Stationary Navier-Stokes Flows in $\Bbb R^n$
http://hdl.handle.net/2261/1374
http://hdl.handle.net/2261/1374a769c6f2-b03c-47c1-9b30-3f27a70688fc
名前 / ファイル | ライセンス | アクション |
---|---|---|
jms040104.pdf (320.5 kB)
|
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2008-03-04 | |||||
タイトル | ||||||
タイトル | On L$^1$-Stability of Stationary Navier-Stokes Flows in $\Bbb R^n$ | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | departmental bulletin paper | |||||
著者 |
Miyakawa, Tetsuro
× Miyakawa, Tetsuro |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Stability of stationary Navier-Stokes flows in $\mbox{\tenopenface R}^n$, $n\geq 3$, is discussed in the function space ${\bm L}^1$ or ${\bm H}^1$ (Hardy space). It is shown that a stationary flow ${\bm w}$ is stable in ${\bm H}^1$\ (resp.\ ${\bm L}^1$)\ if $\sup|x|\cdot|{\bm w}(x)|+\sup|x|^2|\ abla{\bm w}(x)|$ (resp.\ $\|{\bm w}\|_{(n,1)}+\|\ abla{\bm w}\|_{(n/2,1)}$) is small. Explicit decay rates of the form $O(t^{-β/2})$, $0<β\leq 1$, are deduced for perturbations under additional assumptions on ${\bm w}$ and on initial data. The proofs of the results heavily rely on the theory of Hardy spaces ${\bm H}^p$\ $(0 |
|||||
書誌情報 |
Journal of mathematical sciences, the University of Tokyo 巻 4, 号 1, p. 67-119, 発行日 1997 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 13405705 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA11021653 | |||||
フォーマット | ||||||
内容記述タイプ | Other | |||||
内容記述 | application/pdf | |||||
日本十進分類法 | ||||||
主題Scheme | NDC | |||||
主題 | 415 | |||||
Mathematical Reviews Number | ||||||
値 | MR1451304 | |||||
Mathmatical Subject Classification | ||||||
値 | 35Q30(MSC1991) | |||||
Mathmatical Subject Classification | ||||||
値 | 76D05(MSC1991) | |||||
出版者 | ||||||
出版者 | Graduate School of Mathematical Sciences, The University of Tokyo | |||||
原稿受領日 | ||||||
値 | 1996-01-16 |