WEKO3
アイテム
On L$^1$-Stability of Stationary Navier-Stokes Flows in $\Bbb R^n$
http://hdl.handle.net/2261/1374
http://hdl.handle.net/2261/1374a769c6f2-b03c-47c1-9b30-3f27a70688fc
| 名前 / ファイル | ライセンス | アクション |
|---|---|---|
|
|
|
| Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
|---|---|---|---|---|---|---|
| 公開日 | 2008-03-04 | |||||
| タイトル | ||||||
| タイトル | On L$^1$-Stability of Stationary Navier-Stokes Flows in $\Bbb R^n$ | |||||
| 言語 | ||||||
| 言語 | eng | |||||
| 資源タイプ | ||||||
| 資源 | http://purl.org/coar/resource_type/c_6501 | |||||
| タイプ | departmental bulletin paper | |||||
| 著者 |
Miyakawa, Tetsuro
× Miyakawa, Tetsuro |
|||||
| 抄録 | ||||||
| 内容記述タイプ | Abstract | |||||
| 内容記述 | Stability of stationary Navier-Stokes flows in $\mbox{\tenopenface R}^n$, $n\geq 3$, is discussed in the function space ${\bm L}^1$ or ${\bm H}^1$ (Hardy space). It is shown that a stationary flow ${\bm w}$ is stable in ${\bm H}^1$\ (resp.\ ${\bm L}^1$)\ if $\sup|x|\cdot|{\bm w}(x)|+\sup|x|^2|\ abla{\bm w}(x)|$ (resp.\ $\|{\bm w}\|_{(n,1)}+\|\ abla{\bm w}\|_{(n/2,1)}$) is small. Explicit decay rates of the form $O(t^{-β/2})$, $0<β\leq 1$, are deduced for perturbations under additional assumptions on ${\bm w}$ and on initial data. The proofs of the results heavily rely on the theory of Hardy spaces ${\bm H}^p$\ $(0 |
|||||
| 書誌情報 |
Journal of mathematical sciences, the University of Tokyo 巻 4, 号 1, p. 67-119, 発行日 1997 |
|||||
| ISSN | ||||||
| 収録物識別子タイプ | ISSN | |||||
| 収録物識別子 | 13405705 | |||||
| 書誌レコードID | ||||||
| 収録物識別子タイプ | NCID | |||||
| 収録物識別子 | AA11021653 | |||||
| フォーマット | ||||||
| 内容記述タイプ | Other | |||||
| 内容記述 | application/pdf | |||||
| 日本十進分類法 | ||||||
| 主題Scheme | NDC | |||||
| 主題 | 415 | |||||
| Mathematical Reviews Number | ||||||
| MR1451304 | ||||||
| Mathmatical Subject Classification | ||||||
| 35Q30(MSC1991) | ||||||
| Mathmatical Subject Classification | ||||||
| 76D05(MSC1991) | ||||||
| 出版者 | ||||||
| 出版者 | Graduate School of Mathematical Sciences, The University of Tokyo | |||||
| 原稿受領日 | ||||||
| 1996-01-16 | ||||||