ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "58d777c5-87b4-4fd3-aacb-444d3986f6a8"}, "_deposit": {"id": "32924", "owner": "1", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "32924"}, "status": "published"}, "_oai": {"id": "oai:repository.dl.itc.u-tokyo.ac.jp:00032924", "sets": []}, "author_link": ["128385", "128386", "128383", "128384"], "item_4_alternative_title_1": {"attribute_name": "\u305d\u306e\u4ed6\u306e\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_alternative_title": "Application of the Dynamic Finite Element Method with Non-reflecting Boundary for Three Dimensional Wave Propagation"}]}, "item_4_biblio_info_7": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "1984-10-20", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "2", "bibliographicPageEnd": "360", "bibliographicPageStart": "327", "bibliographicVolumeNumber": "59", "bibliographic_titles": [{"bibliographic_title": "\u6771\u4eac\u5927\u5b78\u5730\u9707\u7814\u7a76\u6240\u5f59\u5831 = Bulletin of the Earthquake Research Institute, University of Tokyo"}]}]}, "item_4_description_13": {"attribute_name": "\u30d5\u30a9\u30fc\u30de\u30c3\u30c8", "attribute_value_mlt": [{"subitem_description": "application/pdf", "subitem_description_type": "Other"}]}, "item_4_description_5": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "\u6709\u9650\u8981\u7d20\u6cd5\u306f,\u5f3e\u6027\u6ce2\u52d5\u306e\u4f1d\u64ad\u554f\u984c\u3092\u89e3\u304f\u969b\u306b\u6709\u529b\u306a\u624b\u6cd5\u3068\u3057\u3066\u3057\u3070\u3057\u3070\u7528\u3044\u3089\u308c\u3066\u3044\u308b.\u3057\u304b\u3057\u7121\u9650\u9818\u57df,\u6216\u3044\u306f\u534a\u7121\u9650\u9818\u57df\u306e\u4e00\u90e8\u3092\u30e2\u30c7\u30eb\u5316\u3059\u308b\u6642\u306b,\u4eba\u70ba\u7684\u306b\u8a2d\u5b9a\u3059\u308b\u5883\u754c\u306b\u304a\u3044\u3066\u6ce2\u52d5\u304c\u4e71\u3055\u308c,\u9069\u5f53\u306a\u5883\u754c\u51e6\u7406\u3092\u65bd\u3055\u306a\u3044\u3068,\u89e3\u6790\u7d50\u679c\u304c\u7121\u610f\u5473\u306a\u3082\u306e\u306b\u306a\u3063\u3066\u3057\u307e\u3046.\u3053\u306e\u554f\u984c\u3092\u89e3\u6c7a\u3059\u3079\u304f,Cundall\u3089\u306e\u63d0\u6848\u3057\u305f\u65b9\u6cd5\u3092,3\u6b21\u5143\u5f3e\u6027\u6ce2\u52d5\u554f\u984c\u306b\u307e\u3067\u5fdc\u7528\u3057,\u305d\u306e\u5b9f\u7528\u5316\u3092\u8a08\u3063\u305f.Cundall\u306e\u65b9\u6cd5\u306f,Neumann\u6761\u4ef6\u3068Dirichlet\u6761\u4ef6\u306e\u9069\u5f53\u306a\u7d44\u307f\u5408\u308f\u305b\u306b\u3088\u308a,\u5b9a\u91cf\u7684\u8a55\u4fa1\u304c\u53ef\u80fd\u306a\u53cd\u5c04\u6ce2\u3092\u751f\u3058\u3055\u305b,\u305d\u308c\u3092\u6253\u3061\u6d88\u3057\u5408\u30462\u3064\u306e\u89e3\u3092\u6c42\u3081\u308b\u3068\u3044\u3046\u3082\u306e\u3067\u3042\u308b\u304c,\u305d\u306e\u65b9\u6cd5\u306f\u5b8c\u5168\u3067\u3042\u308a,\u89e3\u6790\u9818\u57df\u306e\u6b21\u5143\u306b\u304b\u304b\u304a\u3089\u305a\u9069\u7528\u3067\u304d\u308b\u3053\u3068\u3092\u793a\u3057\u305f.\u4e00\u65b9\u3067,\u305d\u306e\u65b9\u6cd5\u306e\u6301\u3064\u6b20\u70b9\u3082\u660e\u3089\u304b\u306b\u306a\u3063\u305f\u304c,\u305d\u306e\u5f71\u97ff\u306f\u5c0f\u3055\u304f,\u307b\u307c\u6e80\u8db3\u306e\u3044\u304f\u7cbe\u5ea6\u3067\u8a08\u7b97\u7d50\u679c\u304c\u5f97\u3089\u308c\u308b\u3068\u8003\u3048\u3089\u308c\u308b.\u672c\u8ad6\u6587\u3067\u306f,\u6ce2\u52d5\u65b9\u7a0b\u5f0f\u3092\u6642\u9593\u9818\u57df\u3067\u89e3\u304f\u3053\u3068\u3092\u8003\u3048,\u6709\u9650\u30e2\u30c7\u30eb\u3067\u7121\u9650\u9818\u57df\u3068\u7b49\u4fa1\u306a\u89e3\u6790\u304c\u53ef\u80fd\u306a\u3053\u3068\u304c\u793a\u3055\u308c\u305f,\u307e\u305f,\u5730\u76e4-\u69cb\u9020\u7269\u7cfb\u306a\u3069\u3092\u542b\u3080\u4e0d\u898f\u5247\u69cb\u9020\u306e\u5fdc\u7b54\u8a08\u7b97\u306b\u3082\u9069\u7528\u304c\u53ef\u80fd\u3067\u3042\u308b\u304c,\u305d\u306e\u969b\u306b\u306f\u82e5\u5e72\u306e\u5909\u66f4\u3092\u52a0\u3048\u308b\u3060\u3051\u3067\u3088\u304f,\u4eba\u70ba\u5883\u754c\u306b\u6cbf\u3063\u3066\u9032\u884c\u3059\u308b\u6ce2\u52d5\u3068,\u4eba\u70ba\u5883\u754c\u306b\u5165\u5c04\u3059\u308b\u6ce2\u52d5\u3092\u8b58\u5225\u3057\u3066,\u5f8c\u8005\u3092\u6d88\u6ce2\u51e6\u7406\u3059\u308c\u3070\u3088\u3044.\u5fdc\u7528\u4f8b\u3068\u3057\u3066,\u5d16\u5730\u5f62(\u81ea\u7531\u8868\u9762\u306e\u4e0d\u898f\u5247\u6027)\u3068\u30ec\u30f3\u30ba\u72b6\u8edf\u5f31\u5c64(\u5730\u4e0b\u69cb\u9020\u306e\u4e0d\u898f\u5247\u6027)\u306e\u5fdc\u7b54\u8a08\u7b97\u3092\u793a\u3057\u305f.\u6709\u9650\u8981\u7d20\u6cd5\u306f,\u30e2\u30c7\u30eb\u5316\u3059\u308b\u969b\u306e\u5236\u7d04\u6761\u4ef6\u304c\u5c11\u306a\u304f,\u5730\u76e4\u7b49\u306e\u9023\u7d9a\u4f53\u306e\u89e3\u6790\u306b\u975e\u5e38\u306b\u9069\u3057\u3066\u3044\u308b.\u672c\u8ad6\u6587\u3067\u958b\u767a\u3057\u305f\u30d7\u30ed\u30b0\u30e9\u30e0\u3082,\u5730\u9707\u65ad\u5c64\u3092\u542b\u3080\u30de\u30af\u30ed\u306a\u6ce2\u52d5\u4f1d\u64ad\u554f\u984c\u304b\u3089,\u4e0d\u898f\u5247\u5730\u76e4\u306e\u5fdc\u7b54\u8a08\u7b97\u306b\u307e\u3067\u9069\u7528\u304c\u53ef\u80fd\u3067\u3042\u308a,\u89e3\u6790\u7684\u306b\u89e3\u304f\u306e\u304c\u56f0\u96e3\u306a\u8af8\u554f\u984c\u3092\u89e3\u660e\u3067\u304d\u308b\u3068\u8003\u3048\u3089\u308c\u308b.\u3057\u304b\u3057,\u6570\u5024\u89e3\u6790\u6642\u306b\u6642\u7a7a\u9818\u57df\u3092\u96e2\u6563\u5316\u3059\u308b\u3053\u3068\u306b\u3088\u308a\u751f\u3058\u308b\u6ce2\u52d5\u306e\u6e1b\u8870\u6027\u3084\u5206\u6563\u6027\u306e\u554f\u984c\u3084,\u6709\u9650\u8981\u7d20\u6cd5\u89e3\u6790\u306e\u524d\u51e6\u7406,\u5f8c\u51e6\u7406\u306e\u554f\u984c\u306a\u3069\u91cd\u8981\u306a\u8ab2\u984c\u304c\u6b8b\u3055\u308c\u3066\u3044\u308b\u304c,\u4e00\u5fdc\u306e\u6210\u679c\u306f\u6210\u3057\u5f97\u305f\u3068\u601d\u308f\u308c\u308b.", "subitem_description_type": "Abstract"}, {"subitem_description": "The dynamic Finite Element Method is frequently used in analyzing wave propagation problems. In the case of infinite media or infinite half space, the presence of artificial boundaries introduces wave reflections from boundaries. The problem can be overcome by constructing a model of sufficient size that the required solution is obtained before the reflections arrive. But this is not always available, because the model size is limited by a computer storage. Lysmer et al (1969) developed a model system of dashpots at boundaries and transmitting boundary method as non-reflecting boundary. Their methods have some approximation, for example, basement layer is rigid and so on. Authors tried to solve the problem applying the Smith-Cundall\u0027s method and extended the method to the three dimensional problem. The Smith-Cundall\u0027s method is to solve the problem by superposing two types of reflected waves from Dirichlet\u0027s and Neumann\u0027s boundaries. This method is theoretically complete. The authors made clear the weak point of the method, but the influence of the weak point on the computed results is small. Therefore, the results by this method are reliable. This method treats problems in time domain, so non-linear problems will be solved by this method in the near future.", "subitem_description_type": "Abstract"}]}, "item_4_full_name_3": {"attribute_name": "\u8457\u8005\u5225\u540d", "attribute_value_mlt": [{"nameIdentifiers": [{"nameIdentifier": "128385", "nameIdentifierScheme": "WEKO"}], "names": [{"name": "Suzuki, Takanobu"}]}, {"nameIdentifiers": [{"nameIdentifier": "128386", "nameIdentifierScheme": "WEKO"}], "names": [{"name": "Hakuno, Motohiko"}]}]}, "item_4_identifier_registration": {"attribute_name": "ID\u767b\u9332", "attribute_value_mlt": [{"subitem_identifier_reg_text": "10.15083/0000032924", "subitem_identifier_reg_type": "JaLC"}]}, "item_4_publisher_20": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "\u6771\u4eac\u5927\u5b66\u5730\u9707\u7814\u7a76\u6240"}]}, "item_4_source_id_10": {"attribute_name": "\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID", "attribute_value_mlt": [{"subitem_source_identifier": "AN00162258", "subitem_source_identifier_type": "NCID"}]}, "item_4_source_id_8": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "00408972", "subitem_source_identifier_type": "ISSN"}]}, "item_4_subject_15": {"attribute_name": "\u65e5\u672c\u5341\u9032\u5206\u985e\u6cd5", "attribute_value_mlt": [{"subitem_subject": "453", "subitem_subject_scheme": "NDC"}]}, "item_4_text_21": {"attribute_name": "\u51fa\u7248\u8005\u5225\u540d", "attribute_value_mlt": [{"subitem_text_value": "Earthquake Research Institute, University of Tokyo"}]}, "item_4_text_34": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"subitem_text_value": "Departmental Bulletin Paper"}]}, "item_4_text_4": {"attribute_name": "\u8457\u8005\u6240\u5c5e", "attribute_value_mlt": [{"subitem_text_value": "\u65e5\u672c\u96fb\u4fe1\u96fb\u8a71\u516c\u793e"}, {"subitem_text_value": "\u5730\u9707\u7814\u7a76\u6240"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u9234\u6728, \u5d07\u4f38"}], "nameIdentifiers": [{"nameIdentifier": "128383", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "\u4f2f\u91ce, \u5143\u5f66"}], "nameIdentifiers": [{"nameIdentifier": "128384", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2017-06-26"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "ji0592006.pdf", "filesize": [{"value": "1.7 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 1700000.0, "url": {"label": "ji0592006.pdf", "url": "https://repository.dl.itc.u-tokyo.ac.jp/record/32924/files/ji0592006.pdf"}, "version_id": "87e3d997-daaf-4e05-b15e-0dec5741bfd1"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "jpn"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "\u6d88\u6ce2\u5883\u754c\u3092\u6301\u3063\u305f\u6709\u9650\u8981\u7d20\u6cd5\u306b\u3088\u308b\u6ce2\u52d5\u4f1d\u64ad\u89e3\u6790", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "\u6d88\u6ce2\u5883\u754c\u3092\u6301\u3063\u305f\u6709\u9650\u8981\u7d20\u6cd5\u306b\u3088\u308b\u6ce2\u52d5\u4f1d\u64ad\u89e3\u6790", "subitem_title_language": "ja"}]}, "item_type_id": "4", "owner": "1", "path": ["80/4535/4787/4793", "9/504/4538/4789/4794"], "permalink_uri": "https://doi.org/10.15083/0000032924", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2008-05-30"}, "publish_date": "2008-05-30", "publish_status": "0", "recid": "32924", "relation": {}, "relation_version_is_last": true, "title": ["\u6d88\u6ce2\u5883\u754c\u3092\u6301\u3063\u305f\u6709\u9650\u8981\u7d20\u6cd5\u306b\u3088\u308b\u6ce2\u52d5\u4f1d\u64ad\u89e3\u6790"], "weko_shared_id": -1}
  1. 131 地震研究所
  2. 東京大学地震研究所彙報
  3. 59
  4. 2
  1. 0 資料タイプ別
  2. 30 紀要・部局刊行物
  3. 東京大学地震研究所彙報
  4. 59
  5. 2

消波境界を持った有限要素法による波動伝播解析

https://doi.org/10.15083/0000032924
7bf0cb47-f4a6-4d06-99db-cbbade8382b7
名前 / ファイル ライセンス アクション
ji0592006.pdf ji0592006.pdf (1.7 MB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2008-05-30
タイトル
タイトル 消波境界を持った有限要素法による波動伝播解析
言語 ja
言語
言語 jpn
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
ID登録
ID登録 10.15083/0000032924
ID登録タイプ JaLC
その他のタイトル
その他のタイトル Application of the Dynamic Finite Element Method with Non-reflecting Boundary for Three Dimensional Wave Propagation
著者 鈴木, 崇伸

× 鈴木, 崇伸

WEKO 128383

鈴木, 崇伸

Search repository
伯野, 元彦

× 伯野, 元彦

WEKO 128384

伯野, 元彦

Search repository
著者別名
識別子
識別子 128385
識別子Scheme WEKO
姓名
姓名 Suzuki, Takanobu
著者別名
識別子
識別子 128386
識別子Scheme WEKO
姓名
姓名 Hakuno, Motohiko
著者所属
著者所属 日本電信電話公社
著者所属
著者所属 地震研究所
抄録
内容記述タイプ Abstract
内容記述 有限要素法は,弾性波動の伝播問題を解く際に有力な手法としてしばしば用いられている.しかし無限領域,或いは半無限領域の一部をモデル化する時に,人為的に設定する境界において波動が乱され,適当な境界処理を施さないと,解析結果が無意味なものになってしまう.この問題を解決すべく,Cundallらの提案した方法を,3次元弾性波動問題にまで応用し,その実用化を計った.Cundallの方法は,Neumann条件とDirichlet条件の適当な組み合わせにより,定量的評価が可能な反射波を生じさせ,それを打ち消し合う2つの解を求めるというものであるが,その方法は完全であり,解析領域の次元にかかおらず適用できることを示した.一方で,その方法の持つ欠点も明らかになったが,その影響は小さく,ほぼ満足のいく精度で計算結果が得られると考えられる.本論文では,波動方程式を時間領域で解くことを考え,有限モデルで無限領域と等価な解析が可能なことが示された,また,地盤-構造物系などを含む不規則構造の応答計算にも適用が可能であるが,その際には若干の変更を加えるだけでよく,人為境界に沿って進行する波動と,人為境界に入射する波動を識別して,後者を消波処理すればよい.応用例として,崖地形(自由表面の不規則性)とレンズ状軟弱層(地下構造の不規則性)の応答計算を示した.有限要素法は,モデル化する際の制約条件が少なく,地盤等の連続体の解析に非常に適している.本論文で開発したプログラムも,地震断層を含むマクロな波動伝播問題から,不規則地盤の応答計算にまで適用が可能であり,解析的に解くのが困難な諸問題を解明できると考えられる.しかし,数値解析時に時空領域を離散化することにより生じる波動の減衰性や分散性の問題や,有限要素法解析の前処理,後処理の問題など重要な課題が残されているが,一応の成果は成し得たと思われる.
抄録
内容記述タイプ Abstract
内容記述 The dynamic Finite Element Method is frequently used in analyzing wave propagation problems. In the case of infinite media or infinite half space, the presence of artificial boundaries introduces wave reflections from boundaries. The problem can be overcome by constructing a model of sufficient size that the required solution is obtained before the reflections arrive. But this is not always available, because the model size is limited by a computer storage. Lysmer et al (1969) developed a model system of dashpots at boundaries and transmitting boundary method as non-reflecting boundary. Their methods have some approximation, for example, basement layer is rigid and so on. Authors tried to solve the problem applying the Smith-Cundall's method and extended the method to the three dimensional problem. The Smith-Cundall's method is to solve the problem by superposing two types of reflected waves from Dirichlet's and Neumann's boundaries. This method is theoretically complete. The authors made clear the weak point of the method, but the influence of the weak point on the computed results is small. Therefore, the results by this method are reliable. This method treats problems in time domain, so non-linear problems will be solved by this method in the near future.
書誌情報 東京大學地震研究所彙報 = Bulletin of the Earthquake Research Institute, University of Tokyo

巻 59, 号 2, p. 327-360, 発行日 1984-10-20
ISSN
収録物識別子タイプ ISSN
収録物識別子 00408972
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00162258
フォーマット
内容記述タイプ Other
内容記述 application/pdf
日本十進分類法
主題 453
主題Scheme NDC
出版者
出版者 東京大学地震研究所
出版者別名
Earthquake Research Institute, University of Tokyo
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 22:01:13.579999
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio