WEKO3
アイテム
The Cauchy-Kovalevsky Theorem and Noncompactness Measures
http://hdl.handle.net/2261/1359
http://hdl.handle.net/2261/1359bc6ab3fd-809a-4e93-acc5-c27221b3b05a
| 名前 / ファイル | ライセンス | アクション |
|---|---|---|
|
|
|
| Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
|---|---|---|---|---|---|---|
| 公開日 | 2008-03-04 | |||||
| タイトル | ||||||
| タイトル | The Cauchy-Kovalevsky Theorem and Noncompactness Measures | |||||
| 言語 | ||||||
| 言語 | eng | |||||
| 資源タイプ | ||||||
| 資源 | http://purl.org/coar/resource_type/c_6501 | |||||
| タイプ | departmental bulletin paper | |||||
| 著者 |
Ghisi, Marina
× Ghisi, Marina |
|||||
| 抄録 | ||||||
| 内容記述タイプ | Abstract | |||||
| 内容記述 | We give an abstract version of the Cauchy-Kovalevsky Theorem for the equation $ u' = A(t,u)$ where $A $ is a Caratheodory operator having properties based on noncompactness measures, including Lipschitz and compactness conditions. We give an application of this result to the equation $\partial_{t}^n u + \sum_{i=1,n} f_{i}(u)B^{(n - i + 1)} \partial_{t}^{i - 1}u = 0$ that generalizes the Kirchhoff equation for the vibrating string, when $B$ is {\em not} a compact operator. Our technique is based on Nagumo's weights and on Tonelli delayed problems. | |||||
| 書誌情報 |
Journal of mathematical sciences, the University of Tokyo 巻 4, 号 3, p. 627-647, 発行日 1997 |
|||||
| ISSN | ||||||
| 収録物識別子タイプ | ISSN | |||||
| 収録物識別子 | 13405705 | |||||
| 書誌レコードID | ||||||
| 収録物識別子タイプ | NCID | |||||
| 収録物識別子 | AA11021653 | |||||
| フォーマット | ||||||
| 内容記述タイプ | Other | |||||
| 内容記述 | application/pdf | |||||
| 日本十進分類法 | ||||||
| 主題Scheme | NDC | |||||
| 主題 | 415 | |||||
| Mathematical Reviews Number | ||||||
| MR1484605 | ||||||
| Mathmatical Subject Classification | ||||||
| 35A10(MSC1991) | ||||||
| 出版者 | ||||||
| 出版者 | Graduate School of Mathematical Sciences, The University of Tokyo | |||||
| 原稿受領日 | ||||||
| 1996-09-04 | ||||||