WEKO3
アイテム
Essential Conformal Fields in Pseudo-Riemannian Geometry. II
http://hdl.handle.net/2261/1358
http://hdl.handle.net/2261/13587cb7696b-6487-436b-80d3-0b746cf6f706
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2008-03-04 | |||||
タイトル | ||||||
タイトル | Essential Conformal Fields in Pseudo-Riemannian Geometry. II | |||||
言語 | ||||||
言語 | eng | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | conformal compactification | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | projective quadric | |||||
資源タイプ | ||||||
資源 | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | departmental bulletin paper | |||||
著者 |
Kuhnel, W.
× Kuhnel, W. |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | We study conformal vector fields on pseudo- Riemannian manifolds. In the case of conformally flat manifolds, the main tool is the conformal development map into the projective quadric. On the other hand, we show that there exists a pseudo-Riemannian manifold carrying a complete and essential vector field which is not conformally flat. The example implies that there is no finite dimensional moduli space for such manifolds. Therefore, a pseudo-Riemannian analogue of Alekseevskii's theorem on the classification of essential conformal vector fields cannot be expected. | |||||
書誌情報 |
Journal of mathematical sciences, the University of Tokyo 巻 4, 号 3, p. 649-662, 発行日 1997 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 13405705 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA11021653 | |||||
フォーマット | ||||||
内容記述タイプ | Other | |||||
内容記述 | application/pdf | |||||
日本十進分類法 | ||||||
主題Scheme | NDC | |||||
主題 | 415 | |||||
Mathematical Reviews Number | ||||||
MR1484606 | ||||||
Mathmatical Subject Classification | ||||||
53C50(MSC1991) | ||||||
Mathmatical Subject Classification | ||||||
53A30(MSC1991) | ||||||
出版者 | ||||||
出版者 | Graduate School of Mathematical Sciences, The University of Tokyo | |||||
原稿受領日 | ||||||
1997-02-19 |