ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 121 数理科学研究科
  2. Journal of Mathematical Sciences, the University of Tokyo
  3. 4
  4. 1
  1. 0 資料タイプ別
  2. 30 紀要・部局刊行物
  3. Journal of Mathematical Sciences, the University of Tokyo
  4. 4
  5. 1

Norme Minimale sur le Compléxifié d'un Espace de Hilbert Réel

http://hdl.handle.net/2261/1376
http://hdl.handle.net/2261/1376
4ef34777-faea-40ad-87ae-85e940a4320f
名前 / ファイル ライセンス アクション
jms040102.pdf jms040102.pdf (186.5 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2008-03-04
タイトル
タイトル Norme Minimale sur le Compléxifié d'un Espace de Hilbert Réel
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
著者 Avanissian, V.

× Avanissian, V.

WEKO 138902

Avanissian, V.

Search repository
抄録
内容記述タイプ Abstract
内容記述 Let $\Cal H_{\Bbb R}$ be a real Hilbert space and let $\Cal H_{\Bbb C}$ be the complexification of $\Cal H_{\Bbb R}$. The first part of this paper treats the problem of the existence of the minimal norm $\tilde\ell$ on $\Cal H_{\Bbb C}$ such that % $$\align & \tilde\ell(z)\le\|z\|_{\Cal H_{\Bbb C}}\m\
\hbox{for}\m z\in\Cal H_{\Bbb C} \\ & \tilde\ell(x)=\|x\|_{\Cal H_{\Bbb R}}\m\
\hbox{for}\m x\in\Cal H_{\Bbb R}. \endalign$$ % We prove the following theorem : a)\m The minimal norme $\tilde\ell$ exists in $\Cal H_{\Bbb C}$. b)\m Let $D\subset\Bbb C^N$ be a bounded, convex, balanced domain. There exists a maximal bounded convex, balanced domain $\tilde D\subset\Bbb C^N$ such that % $$\tilde D\supset D,\m\
\tilde D\cap\Bbb R^N=D\cap\Bbb R^N.$$ % c)\m Let $\Cal H_{\Bbb C}=\Bbb C^N$, then the minimal norm $\tilde\ell$ is the supporting function of the unit closed Lie ball in $\Bbb C^N$. (a) and b) extend a result of K. T. Hahn and Peter Plug) where $\Cal H_{\Bbb R}=\Bbb R^N$ and $D$ is the unit euclidean ball in $\Cal C^N$. The second part of the paper gives a geometrical interpretation of the minimal norm $\tilde\ell$ in $\Cal H_{\Bbb C}$. If $\Cal N$ is a norm in $\Bbb C^N$, log $\Cal N(z)$ is plurisubharmonic function. The final part of the paper studies the plurisubharmonic functions $V$ in $\Bbb C^N$ such that $\forall k\in\Bbb C$, $V(kz)=|k|V(z)$, $V(z)\le\|z\|$ for $z\in\Bbb C^N$, $V(x)=\|x\|$ for $x\in\Bbb R^N$, $\|z\|$ is euclidean norm in $\Bbb C^N$.
書誌情報 Journal of mathematical sciences, the University of Tokyo

巻 4, 号 1, p. 33-52, 発行日 1997
ISSN
収録物識別子タイプ ISSN
収録物識別子 13405705
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11021653
フォーマット
内容記述タイプ Other
内容記述 application/pdf
日本十進分類法
主題Scheme NDC
主題 415
Mathematical Reviews Number
MR1451302
Mathmatical Subject Classification
46C05(MSC1991)
Mathmatical Subject Classification
31C10(MSC1991)
Mathmatical Subject Classification
46A55(MSC1991)
Mathmatical Subject Classification
52A40(MSC1991)
出版者
出版者 Graduate School of Mathematical Sciences, The University of Tokyo
原稿受領日
1995-08-28
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 21:02:16.853244
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3