WEKO3
AND
アイテム
{"_buckets": {"deposit": "aee684b8-5309-4528-b693-d9788fb884e0"}, "_deposit": {"id": "41008", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "41008"}, "status": "published"}, "_oai": {"id": "oai:repository.dl.itc.u-tokyo.ac.jp:00041008"}, "item_4_biblio_info_7": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "1987", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "102", "bibliographicPageStart": "73", "bibliographicVolumeNumber": "37", "bibliographic_titles": [{"bibliographic_title": "Scientific papers of the College of Arts and Sciences, the University of Tokyo"}]}]}, "item_4_description_13": {"attribute_name": "\u30d5\u30a9\u30fc\u30de\u30c3\u30c8", "attribute_value_mlt": [{"subitem_description": "application/pdf", "subitem_description_type": "Other"}]}, "item_4_description_5": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "Let G be a finite group with $C_G(O_2(G))\\leq O_2(G)$ and S a Sylow 2-subgroup of G. Assume that S is contained in a unique maximal subgroup of G and that no nonidentity characteristic subgroup of S is normal in G. Then it will be shown that G is essentially equal to LMwrT, where L=SL$F_2$(2$F^m$) or $\\sum (2^l+1)$, M is the natural GF(2)L-module, and T is a 2-group.", "subitem_description_type": "Abstract"}]}, "item_4_identifier_registration": {"attribute_name": "ID\u767b\u9332", "attribute_value_mlt": [{"subitem_identifier_reg_text": "10.15083/00040999", "subitem_identifier_reg_type": "JaLC"}]}, "item_4_publisher_20": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "The University of Tokyo"}]}, "item_4_source_id_10": {"attribute_name": "\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID", "attribute_value_mlt": [{"subitem_source_identifier": "AA10538733", "subitem_source_identifier_type": "NCID"}]}, "item_4_source_id_8": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "02897520", "subitem_source_identifier_type": "ISSN"}]}, "item_4_subject_15": {"attribute_name": "\u65e5\u672c\u5341\u9032\u5206\u985e\u6cd5", "attribute_value_mlt": [{"subitem_subject": "410", "subitem_subject_scheme": "NDC"}]}, "item_4_text_34": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"subitem_text_value": "Departmental Bulletin Paper"}]}, "item_4_text_4": {"attribute_name": "\u8457\u8005\u6240\u5c5e", "attribute_value_mlt": [{"subitem_text_value": "Department of Mathematics, College of Arts and Sciences, University of Tokyo"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Gomi, Kensaku"}], "nameIdentifiers": [{"nameIdentifier": "139884", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2017-06-27"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "scp037005.pdf", "filesize": [{"value": "2.1 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 2100000.0, "url": {"label": "scp037005.pdf", "url": "https://repository.dl.itc.u-tokyo.ac.jp/record/41008/files/scp037005.pdf"}, "version_id": "dd06ced1-e79c-4112-8113-1a51901a9745"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "A Pushing up Theorem for Groups of Characteristic 2 Type", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "A Pushing up Theorem for Groups of Characteristic 2 Type"}]}, "item_type_id": "4", "owner": "1", "path": ["312/7290/7302", "9/504/7292/7303"], "permalink_uri": "https://doi.org/10.15083/00040999", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2008-11-19"}, "publish_date": "2008-11-19", "publish_status": "0", "recid": "41008", "relation": {}, "relation_version_is_last": true, "title": ["A Pushing up Theorem for Groups of Characteristic 2 Type"], "weko_shared_id": null}
A Pushing up Theorem for Groups of Characteristic 2 Type
https://doi.org/10.15083/00040999
c42c3287-9fb1-4a91-8725-3f5247e274f6
名前 / ファイル | ライセンス | アクション | |
---|---|---|---|
![]() |
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2008-11-19 | |||||
タイトル | ||||||
タイトル | A Pushing up Theorem for Groups of Characteristic 2 Type | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源 | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | departmental bulletin paper | |||||
ID登録 | ||||||
ID登録 | 10.15083/00040999 | |||||
ID登録タイプ | JaLC | |||||
著者 |
Gomi, Kensaku
× Gomi, Kensaku |
|||||
著者所属 | ||||||
著者所属 | Department of Mathematics, College of Arts and Sciences, University of Tokyo | |||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Let G be a finite group with $C_G(O_2(G))\leq O_2(G)$ and S a Sylow 2-subgroup of G. Assume that S is contained in a unique maximal subgroup of G and that no nonidentity characteristic subgroup of S is normal in G. Then it will be shown that G is essentially equal to LMwrT, where L=SL$F_2$(2$F^m$) or $\sum (2^l+1)$, M is the natural GF(2)L-module, and T is a 2-group. | |||||
書誌情報 |
Scientific papers of the College of Arts and Sciences, the University of Tokyo 巻 37, p. 73-102, 発行日 1987 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 02897520 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA10538733 | |||||
フォーマット | ||||||
内容記述タイプ | Other | |||||
内容記述 | application/pdf | |||||
日本十進分類法 | ||||||
主題 | 410 | |||||
主題Scheme | NDC | |||||
出版者 | ||||||
出版者 | The University of Tokyo |