ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 121 数理科学研究科
  2. 12120 博士論文(数理科学専攻)
  1. 0 資料タイプ別
  2. 20 学位論文
  3. 021 博士論文

Determining nodes for semilinear parabolic evolution equations in Banach spaces

https://doi.org/10.15083/00005563
https://doi.org/10.15083/00005563
3175cf57-e71e-4037-b259-164805ac028f
名前 / ファイル ライセンス アクション
KakizawaR_24_3_PhD_a.pdf KakizawaR_24_3_PhD_a.pdf (3.0 MB)
KakizawaR_24_3_PhD_b.pdf KakizawaR_24_3_PhD_b.pdf (65.7 kB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2014-02-24
タイトル
タイトル Determining nodes for semilinear parabolic evolution equations in Banach spaces
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_46ec
タイプ thesis
ID登録
ID登録 10.15083/00005563
ID登録タイプ JaLC
その他のタイトル
その他のタイトル バナッハ空間上の半線型放物型発展方程式に対する確定節点
著者 Kakizawa, Ryohei

× Kakizawa, Ryohei

WEKO 11601

Kakizawa, Ryohei

Search repository
著者別名
識別子Scheme WEKO
識別子 11602
姓名 柿澤, 亮平
著者所属
著者所属 東京大学大学院数理科学研究科
著者所属
著者所属 Graduate School of Mathematical Sciences, The University of Tokyo
Abstract
内容記述タイプ Abstract
内容記述 We are concerned with the determination of the asymptotic behaviour of strong solutions to the initial-boundary value problem for general semilinear parabolic equations by the asymptotic behaviour of these strong solutions on a finite set. More precisely, if the asymptotic behaviour of the strong solution is known on a suitable finite set which is called determining nodes, then the asymptotic behaviour of the strong solution itself is entirely determined. We prove the above property by the energy method. Moreover, we are concerned with the determination of the asymptotic behaviour of mild solutions to the abstract initial value problem for semilinear parabolic evolution equations in Lp by the asymptotic behaviour of these mild solutions on a finite set. More precisely, if the asymptotic behaviour of the mild solution is known on determining nodes, then the asymptotic behaviour of the mild solution itself is entirely determined. Not only the asymptotic equivalence but also rate of monomial or exponential convergence can be clarified. We prove the above properties by the theory of analytic semigroups on Banach spaces. As an important application of sectorial operators, we give the linearized operator (Stokes operator) associated with the initial-boundary value problem for the Navier-Stokes equations in a multiply-connected bounded domain with the Navier-Dirichlet boundary condition. Furthermore, we study the asymptotic properties of stationary solutions to this problem. As for the existence and uniqueness, this problem has uniquely a stationary solution in (W2p)n satisfying Lp estimates for any n < p < ∞. The first result is obtained from resolvent estimates for the Stokes operator in L(p,σ) and the Banach fixed point theorem. On the asymptotic stability, the stationary solutions are asymptotically stable in L(p,σ) if they are small in (W1p)n. The second result is proved by the theory of analytic semigroups on Banach spaces.
書誌情報 発行日 2012-03-22
日本十進分類法
主題Scheme NDC
主題 410
学位名
学位名 博士(数理科学)
学位
値 doctoral
学位分野
Mathematical Sciences (数理科学)
学位授与機関
学位授与機関名 University of Tokyo (東京大学)
研究科・専攻
Graduate School of Mathematical Sciences (数理科学研究科)
学位授与年月日
学位授与年月日 2012-03-22
学位授与番号
学位授与番号 甲第28381号
学位記番号
博数理第389号
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 19:40:34.344505
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3