ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "483b80d6-3c63-4e40-be33-6b78e83897d9"}, "_deposit": {"id": "779", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "779"}, "status": "published"}, "_oai": {"id": "oai:repository.dl.itc.u-tokyo.ac.jp:00000779"}, "item_2_biblio_info_7": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2007-06", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "6", "bibliographicPageStart": "A06234", "bibliographicVolumeNumber": "112", "bibliographic_titles": [{"bibliographic_title": "Journal of geophysical research. A"}]}]}, "item_2_description_5": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "A magnetospheric energy principle is formulated to study hydromagnetic stability of a magnetospheric plasma. The magnetospheric plasma is either in a two-dimensional or three-dimensional static equilibrium. It is surrounded by lateral perfectly conducting walls and ideal ionospheres in both cases and also by dawn-dusk periodic boundaries in the two-dimensional case. The two-dimensional case has a translational symmetry and has no unperturbed magnetic field component in the dawn-dusk direction. Unlike the conventional energy principle for a plasma surrounded by a perfectly conducting wall, field lines are assumed to vertically thread the ionospheric boundary, which is not a perfectly conducting rigid wall. Ideal ionospheric boundary conditions are obtained, so that the force operator becomes self-adjoint and the magnetospheric energy principle is valid. There are four ideal ionospheric boundary conditions to satisfy these requirements: horizontally free, conducting, free, and rigid. A change in the potential energy becomes equal to the sum of the change in the fluid energy and an ionospheric surface contribution, which is negative and thus destabilizing for horizontally free and free ionospheric boundary conditions. A minimization condition for the change in the potential energy is obtained. When an unperturbed field-aligned current vanishes, the horizontally free, conducting, free, and rigid boundary conditions allow interchange, incompressible ballooning, incompressible ballooning, and compressible ballooning modes, respectively. Different characteristics of those three pressure-driven modes are clarified. Existing interchange stability criteria are compared and results of several different numerical stability analyses of ballooning instabilities for different magnetospheric equilibria are discussed systematically in light of the present magnetospheric energy principle.", "subitem_description_type": "Abstract"}]}, "item_2_publisher_20": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "American Geophysical Union"}]}, "item_2_relation_11": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "info:doi/10.1029/2006JA011992", "subitem_relation_type_select": "DOI"}}]}, "item_2_rights_12": {"attribute_name": "\u6a29\u5229", "attribute_value_mlt": [{"subitem_rights": "copyright 2007 by the American Geophysical Union"}]}, "item_2_source_id_10": {"attribute_name": "\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID", "attribute_value_mlt": [{"subitem_source_identifier": "AA10819721", "subitem_source_identifier_type": "NCID"}]}, "item_2_source_id_8": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "01480227", "subitem_source_identifier_type": "ISSN"}]}, "item_2_subject_15": {"attribute_name": "\u65e5\u672c\u5341\u9032\u5206\u985e\u6cd5", "attribute_value_mlt": [{"subitem_subject": "450", "subitem_subject_scheme": "NDC"}]}, "item_2_text_34": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"subitem_text_value": "Journal Article"}]}, "item_2_text_4": {"attribute_name": "\u8457\u8005\u6240\u5c5e", "attribute_value_mlt": [{"subitem_text_value": "Department of Earth and Planetary Physics, University of Tokyo"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Miura, Akira"}], "nameIdentifiers": [{"nameIdentifier": "2983", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2017-05-30"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "JGR_A112_NA06_a06234.pdf", "filesize": [{"value": "464.1 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 464100.0, "url": {"label": "JGR_A112_NA06_a06234.pdf", "url": "https://repository.dl.itc.u-tokyo.ac.jp/record/779/files/JGR_A112_NA06_a06234.pdf"}, "version_id": "90b4c457-c69f-4fe1-8882-81b84477d90a"}]}, "item_keyword": {"attribute_name": "\u30ad\u30fc\u30ef\u30fc\u30c9", "attribute_value_mlt": [{"subitem_subject": "MHD instabilities", "subitem_subject_scheme": "Other"}, {"subitem_subject": "energy principle", "subitem_subject_scheme": "Other"}, {"subitem_subject": "pressure-driven instabilities", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "A magnetospheric energy principle for hydromagnetic stability problems", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "A magnetospheric energy principle for hydromagnetic stability problems"}]}, "item_type_id": "2", "owner": "1", "path": ["9/10/11", "75/121/122"], "permalink_uri": "http://hdl.handle.net/2261/38137", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2016-12-28"}, "publish_date": "2016-12-28", "publish_status": "0", "recid": "779", "relation": {}, "relation_version_is_last": true, "title": ["A magnetospheric energy principle for hydromagnetic stability problems"], "weko_shared_id": null}
  1. 115 理学系研究科・理学部
  2. 06 地球惑星科学専攻
  3. 1150610 学術雑誌論文
  1. 0 資料タイプ別
  2. 10 学術雑誌論文
  3. 014 自然科学

A magnetospheric energy principle for hydromagnetic stability problems

http://hdl.handle.net/2261/38137
f5e79523-611d-4b43-bfcc-78046335fcfb
名前 / ファイル ライセンス アクション
JGR_A112_NA06_a06234.pdf JGR_A112_NA06_a06234.pdf (464.1 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2016-12-28
タイトル
タイトル A magnetospheric energy principle for hydromagnetic stability problems
言語
言語 eng
キーワード
主題 MHD instabilities
主題Scheme Other
キーワード
主題 energy principle
主題Scheme Other
キーワード
主題 pressure-driven instabilities
主題Scheme Other
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ journal article
著者 Miura, Akira

× Miura, Akira

WEKO 2983

Miura, Akira

Search repository
著者所属
著者所属 Department of Earth and Planetary Physics, University of Tokyo
抄録
内容記述タイプ Abstract
内容記述 A magnetospheric energy principle is formulated to study hydromagnetic stability of a magnetospheric plasma. The magnetospheric plasma is either in a two-dimensional or three-dimensional static equilibrium. It is surrounded by lateral perfectly conducting walls and ideal ionospheres in both cases and also by dawn-dusk periodic boundaries in the two-dimensional case. The two-dimensional case has a translational symmetry and has no unperturbed magnetic field component in the dawn-dusk direction. Unlike the conventional energy principle for a plasma surrounded by a perfectly conducting wall, field lines are assumed to vertically thread the ionospheric boundary, which is not a perfectly conducting rigid wall. Ideal ionospheric boundary conditions are obtained, so that the force operator becomes self-adjoint and the magnetospheric energy principle is valid. There are four ideal ionospheric boundary conditions to satisfy these requirements: horizontally free, conducting, free, and rigid. A change in the potential energy becomes equal to the sum of the change in the fluid energy and an ionospheric surface contribution, which is negative and thus destabilizing for horizontally free and free ionospheric boundary conditions. A minimization condition for the change in the potential energy is obtained. When an unperturbed field-aligned current vanishes, the horizontally free, conducting, free, and rigid boundary conditions allow interchange, incompressible ballooning, incompressible ballooning, and compressible ballooning modes, respectively. Different characteristics of those three pressure-driven modes are clarified. Existing interchange stability criteria are compared and results of several different numerical stability analyses of ballooning instabilities for different magnetospheric equilibria are discussed systematically in light of the present magnetospheric energy principle.
書誌情報 Journal of geophysical research. A

巻 112, 号 6, p. A06234, 発行日 2007-06
ISSN
収録物識別子タイプ ISSN
収録物識別子 01480227
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA10819721
DOI
関連識別子
識別子タイプ DOI
関連識別子 info:doi/10.1029/2006JA011992
権利
権利情報 copyright 2007 by the American Geophysical Union
日本十進分類法
主題 450
主題Scheme NDC
出版者
出版者 American Geophysical Union
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-02 08:44:50.083014
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio