ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "2001449b-2643-4258-87f4-7ceecb5be422"}, "_deposit": {"id": "2509", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "2509"}, "status": "published"}, "_oai": {"id": "oai:repository.dl.itc.u-tokyo.ac.jp:00002509"}, "item_7_alternative_title_1": {"attribute_name": "\u305d\u306e\u4ed6\u306e\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_alternative_title": "\u91cf\u5b50\u5834\u306e\u71b1\u5316\u8ab2\u7a0b\u306e\u30ab\u30c0\u30ce\u30d5\u30fb\u30d9\u30a4\u30e0\u7406\u8ad6"}]}, "item_7_biblio_info_7": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2010-03-24", "bibliographicIssueDateType": "Issued"}, "bibliographic_titles": [{}]}]}, "item_7_date_granted_25": {"attribute_name": "\u5b66\u4f4d\u6388\u4e0e\u5e74\u6708\u65e5", "attribute_value_mlt": [{"subitem_dategranted": "2010-03-24"}]}, "item_7_degree_grantor_23": {"attribute_name": "\u5b66\u4f4d\u6388\u4e0e\u6a5f\u95a2", "attribute_value_mlt": [{"subitem_degreegrantor": [{"subitem_degreegrantor_name": "University of Tokyo (\u6771\u4eac\u5927\u5b66)"}]}]}, "item_7_degree_name_20": {"attribute_name": "\u5b66\u4f4d\u540d", "attribute_value_mlt": [{"subitem_degreename": "\u535a\u58eb(\u5b66\u8853)"}]}, "item_7_description_5": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "We present a theoretical study of thermalization of quantum fields with Kadanoff-Baym (KB) equation. First we introduce a field theoretical technique known as 2 Particle Irreducible (2PI) effective action and review derivation of equation of motion for mean fields and fluctuations, then derive Kadanoff-Baym equation in scalar and gauge theories. In order to analyze thermalization processes we introduce relativistic entropy current based on the first order gradient expansion of Kadanoff-Baym equation. Then we show that in taking into account next-to-leading order (NLO) self-energy of the coupling expansion in \u03c64 theory (in symmetric phase \u003c\u03c6^\u003e = 0), it is possible to prove the H-theorem within the 1st order gradient expansion. We also show that it is possible to prove the H-theorem for KB equation with NLO self-energy of 1/N expansion in O(N) theory (in symmetric phase). Furthermore we suggest a possibility for H-theorem to be satisfied in KB equation with leading-order (LO) self-energy of the coupling expansion in non-Abelian gauge theory. In d+1 dimensions (d\uff1e2) LO particle number changing processes, such as 0-to-3, 1-to-2 and 2-to-1, which are prohibited in the normal Boltzmann approach with on-shell particles, may contribute to entropy production in KB approach although we must deal with gauge dependence and infrared divergence to complete the proof. Next we perform numerical simulations in spatially homogeneous configurations to investigate thermalization properties of the system in 1+1 and 2+1 dimensions for \u03c64 theory with NLO self-energy of the coupling expansion and 1+1 dimensions for O(N) theory with NLO self-energy of 1/N expansion. We also estimate the time evolution of the kinetic entropy in the case of scalar \u03c64 and O(N) theory. Then we find that at later times X0\u226b1/m, where m represents mass of particles, the kinetic entropy increases monotonically and approaches the equilibrium value, although the limited time interval at the earlier times X0\uff5e1/m invalidates the use of it. No thermalization occurs in the simulations with the normal Boltzmann equation with 2-to-2 collision term in 1+1 dimensions, while it occurs in the simulations with KB equation in 1+1 dimensions. It is due to two types of offshell effects: memory effects and spectral functions with the decay width.", "subitem_description_type": "Abstract"}]}, "item_7_dissertation_number_26": {"attribute_name": "\u5b66\u4f4d\u6388\u4e0e\u756a\u53f7", "attribute_value_mlt": [{"subitem_dissertationnumber": "\u7532\u7b2c25541\u53f7"}]}, "item_7_full_name_3": {"attribute_name": "\u8457\u8005\u5225\u540d", "attribute_value_mlt": [{"nameIdentifiers": [{"nameIdentifier": "6820", "nameIdentifierScheme": "WEKO"}], "names": [{"name": "\u897f\u5c71, \u967d\u5927"}]}]}, "item_7_identifier_registration": {"attribute_name": "ID\u767b\u9332", "attribute_value_mlt": [{"subitem_identifier_reg_text": "10.15083/00002503", "subitem_identifier_reg_type": "JaLC"}]}, "item_7_select_21": {"attribute_name": "\u5b66\u4f4d", "attribute_value_mlt": [{"subitem_select_item": "doctoral"}]}, "item_7_subject_13": {"attribute_name": "\u65e5\u672c\u5341\u9032\u5206\u985e\u6cd5", "attribute_value_mlt": [{"subitem_subject": "421", "subitem_subject_scheme": "NDC"}]}, "item_7_text_22": {"attribute_name": "\u5b66\u4f4d\u5206\u91ce", "attribute_value_mlt": [{"subitem_text_value": "Humanities and Social Sciences (\u5b66\u8853)"}]}, "item_7_text_24": {"attribute_name": "\u7814\u7a76\u79d1\u30fb\u5c02\u653b", "attribute_value_mlt": [{"subitem_text_value": "Department of Multi-Disciplinary Sciences, Graduate School of Arts and Sciences (\u7dcf\u5408\u6587\u5316\u7814\u7a76\u79d1\u5e83\u57df\u79d1\u5b66\u5c02\u653b)"}]}, "item_7_text_27": {"attribute_name": "\u5b66\u4f4d\u8a18\u756a\u53f7", "attribute_value_mlt": [{"subitem_text_value": "\u535a\u7dcf\u5408\u7b2c990\u53f7"}]}, "item_7_text_36": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"subitem_text_value": "Thesis"}]}, "item_7_text_4": {"attribute_name": "\u8457\u8005\u6240\u5c5e", "attribute_value_mlt": [{"subitem_text_value": "\u6771\u4eac\u5927\u5b66\u7dcf\u5408\u6587\u5316\u7814\u7a76\u79d1\u5e83\u57df\u79d1\u5b66\u5c02\u653b"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Nishiyama, Akihiro"}], "nameIdentifiers": [{"nameIdentifier": "6819", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2017-05-31"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "nishiyama_1.pdf", "filesize": [{"value": "124.8 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 124800.0, "url": {"label": "nishiyama_1.pdf", "url": "https://repository.dl.itc.u-tokyo.ac.jp/record/2509/files/nishiyama_1.pdf"}, "version_id": "a9fbaea4-d1f1-4f6a-9b50-c298dfc91497"}, {"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2017-05-31"}], "displaytype": "detail", "download_preview_message": "", "file_order": 1, "filename": "nishiyama_2.pdf", "filesize": [{"value": "2.0 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 2000000.0, "url": {"label": "nishiyama_2.pdf", "url": "https://repository.dl.itc.u-tokyo.ac.jp/record/2509/files/nishiyama_2.pdf"}, "version_id": "85d2084b-9a1a-4ad6-8e8b-f6567b76ed60"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "thesis", "resourceuri": "http://purl.org/coar/resource_type/c_46ec"}]}, "item_title": "Kadanoff-Baym Theory for Thermalization of Quantum Fields", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Kadanoff-Baym Theory for Thermalization of Quantum Fields"}]}, "item_type_id": "7", "owner": "1", "path": ["9/233/280", "43/65/379"], "permalink_uri": "https://doi.org/10.15083/00002503", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2012-03-01"}, "publish_date": "2012-03-01", "publish_status": "0", "recid": "2509", "relation": {}, "relation_version_is_last": true, "title": ["Kadanoff-Baym Theory for Thermalization of Quantum Fields"], "weko_shared_id": null}
  1. 118 総合文化研究科・教養学部
  2. 50 広域科学専攻
  3. 1185020 博士論文(広域科学専攻)
  1. 0 資料タイプ別
  2. 20 学位論文
  3. 021 博士論文

Kadanoff-Baym Theory for Thermalization of Quantum Fields

https://doi.org/10.15083/00002503
20778bde-4f30-4f03-8892-b8c81760400b
名前 / ファイル ライセンス アクション
nishiyama_1.pdf nishiyama_1.pdf (124.8 kB)
nishiyama_2.pdf nishiyama_2.pdf (2.0 MB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2012-03-01
タイトル
タイトル Kadanoff-Baym Theory for Thermalization of Quantum Fields
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_46ec
タイプ thesis
ID登録
ID登録 10.15083/00002503
ID登録タイプ JaLC
その他のタイトル
その他のタイトル 量子場の熱化課程のカダノフ・ベイム理論
著者 Nishiyama, Akihiro

× Nishiyama, Akihiro

WEKO 6819

Nishiyama, Akihiro

Search repository
著者別名
識別子
識別子 6820
識別子Scheme WEKO
姓名
姓名 西山, 陽大
著者所属
著者所属 東京大学総合文化研究科広域科学専攻
Abstract
内容記述タイプ Abstract
内容記述 We present a theoretical study of thermalization of quantum fields with Kadanoff-Baym (KB) equation. First we introduce a field theoretical technique known as 2 Particle Irreducible (2PI) effective action and review derivation of equation of motion for mean fields and fluctuations, then derive Kadanoff-Baym equation in scalar and gauge theories. In order to analyze thermalization processes we introduce relativistic entropy current based on the first order gradient expansion of Kadanoff-Baym equation. Then we show that in taking into account next-to-leading order (NLO) self-energy of the coupling expansion in φ4 theory (in symmetric phase <φ^> = 0), it is possible to prove the H-theorem within the 1st order gradient expansion. We also show that it is possible to prove the H-theorem for KB equation with NLO self-energy of 1/N expansion in O(N) theory (in symmetric phase). Furthermore we suggest a possibility for H-theorem to be satisfied in KB equation with leading-order (LO) self-energy of the coupling expansion in non-Abelian gauge theory. In d+1 dimensions (d>2) LO particle number changing processes, such as 0-to-3, 1-to-2 and 2-to-1, which are prohibited in the normal Boltzmann approach with on-shell particles, may contribute to entropy production in KB approach although we must deal with gauge dependence and infrared divergence to complete the proof. Next we perform numerical simulations in spatially homogeneous configurations to investigate thermalization properties of the system in 1+1 and 2+1 dimensions for φ4 theory with NLO self-energy of the coupling expansion and 1+1 dimensions for O(N) theory with NLO self-energy of 1/N expansion. We also estimate the time evolution of the kinetic entropy in the case of scalar φ4 and O(N) theory. Then we find that at later times X0≫1/m, where m represents mass of particles, the kinetic entropy increases monotonically and approaches the equilibrium value, although the limited time interval at the earlier times X0~1/m invalidates the use of it. No thermalization occurs in the simulations with the normal Boltzmann equation with 2-to-2 collision term in 1+1 dimensions, while it occurs in the simulations with KB equation in 1+1 dimensions. It is due to two types of offshell effects: memory effects and spectral functions with the decay width.
書誌情報 発行日 2010-03-24
日本十進分類法
主題 421
主題Scheme NDC
学位名
学位名 博士(学術)
学位
値 doctoral
学位分野
Humanities and Social Sciences (学術)
学位授与機関
学位授与機関名
学位授与機関名 University of Tokyo (東京大学)
研究科・専攻
Department of Multi-Disciplinary Sciences, Graduate School of Arts and Sciences (総合文化研究科広域科学専攻)
学位授与年月日
学位授与年月日 2010-03-24
学位授与番号
学位授与番号 甲第25541号
学位記番号
博総合第990号
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 20:01:27.009348
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio