ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 121 数理科学研究科
  2. 12120 博士論文(数理科学専攻)
  1. 0 資料タイプ別
  2. 20 学位論文
  3. 021 博士論文

Brauer groups, Mackey and Tambara functors on profinite groups, and 2-dimensional homological algebra

https://doi.org/10.15083/00004012
https://doi.org/10.15083/00004012
3f147cdd-6467-4932-8c19-c816c5078cab
名前 / ファイル ライセンス アクション
NakaokaH_21_3_PhD_a.pdf NakaokaH_21_3_PhD_a.pdf (12.0 MB)
NakaokaH_21_3_PhD_b.pdf NakaokaH_21_3_PhD_b.pdf (52.4 kB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2012-10-23
タイトル
タイトル Brauer groups, Mackey and Tambara functors on profinite groups, and 2-dimensional homological algebra
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_46ec
タイプ thesis
ID登録
ID登録 10.15083/00004012
ID登録タイプ JaLC
その他のタイトル
その他のタイトル Brauer 群、プロ有限群上のMackey 及び丹原関手2次元ホモロジー代数
著者 NAKAOKA, HIROYUKI

× NAKAOKA, HIROYUKI

WEKO 9288

NAKAOKA, HIROYUKI

Search repository
著者別名
識別子Scheme WEKO
識別子 9289
姓名 中岡, 宏行
著者所属
著者所属 東京大学大学院数理科学研究科
著者所属
著者所属 Graduate School of Mathematical Sciences, The University of Tokyo
Abstract
内容記述タイプ Abstract
内容記述 In this thesis, we investigated categories and functors related to Brauer groups. In 1986, E.T.Jacobson defined the Brauer ring B(E,D) for a finite Galois field extension E/D, whose unit group canonically contains the Brauer group of D. In Part 1, we investigate the structure of B (E,D). More generally, we determine the structure of the F-Burnside ring for any additive functor F. This reslut enables us to calculate Brauer rings for some extensions. We illustrate how this isomorphism provides Green-functor theoretic meanings for the properties of the Brauer ring shown by Jacobson, and compute the Brauer ring of the extension C/R. For any finite etale covering of schemes, we can associate two homomorphisms of Brauer groups, namely the pull-back and the norm map. For any connected scheme X, if we take the Galois category C of finite etale coverings over X, we see these homomorphisms make Brauer groups into a bivariant functor (= Mackey functor) on C. As a corollary, restricting to a finite Galois covering of schemes, we obtain. a cohomological Mackey functor on its Galois group. This is a generalization of the result for rings by Ford [12]. The Tambara functor was defined by Tambara in the name of TNR-functor, to treat certain ring-valued Mackey functors on a finite group. Recently Brunrevealed the importance of Tambara functors in the Witt-Burnside construction. In Part 3, we define the Tambara functor on the Mackey system of Bley and Boltje. Yoshida's generalized Burnside ring functor is the first example. Consequently, we can consider· a Tambara functor on any profinite group. In relation with the Witt-Burnside construction, we can give a Tambara-functor structure on Elliott's functor V M, which generalizes the completed Burnside ring functor of Dress and Siebeneicher. Recently, symmetric categorical groups are used for the study of the Brauer groups of symmetric monoidal categories. As a part of these efforts, some algebraic structures of the 2-category of symmetric categorical groups SCG are investigated. In Part 4, we consider a 2-categorical analogue of an abelian category, in such a way that it contains SCG as an example. As the main theorem in this part, we construct a long cohomology 2-exact sequence from any extension of complexes in such a 2-category. Our axiomatic and self-dual definition will enable us to simplify various kind of arguments related to the 2-dimensional homological algebra, by analogy with abelian categories.
書誌情報 発行日 2009-03-23
日本十進分類法
主題Scheme NDC
主題 410
学位名
学位名 博士(数理科学)
学位
値 doctoral
学位分野
Mathematical Sciences (数理科学)
学位授与機関
学位授与機関名 University of Tokyo (東京大学)
研究科・専攻
Graduate School of Mathematical Sciences (数理科学研究科)
学位授与年月日
学位授与年月日 2009-03-23
学位授与番号
学位授与番号 甲第24983号
学位記番号
博数理第338号
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 19:47:43.798674
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3